Câu hỏi:

23/08/2025 34 Lưu

Trên bàn có hai hộp bi với hình dạng và kích thước như nhau. Hộp thứ nhất có 6 viên bi đỏ, 7 viên bi vàng; còn hộp thứ hai có 10 viên bi đỏ, 11 viên bi vàng. Các viên bi có hình dạng và kích thước như nhau. Chọn ngẫu nhiên một hộp bi và từ hộp đó lấy ngẫu nhiên một viên bi. Tính xác suất để viên bi được lấy có màu đỏ.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét các biến cố:

A: "Lấy được viên bi màu đỏ";

B: "Chọn được hộp bi thứ nhất".

Theo giả thiết, ta có: \({\rm{P}}(B) = {\rm{P}}(\bar B) = \frac{1}{2};{\rm{P}}(A\mid B) = \frac{6}{{13}};{\rm{P}}(A\mid \bar B) = \frac{{10}}{{21}}.\)

Theo công thức xác suất toàn phần, ta có:

\({\rm{P}}(A) = {\rm{P}}(B) \cdot {\rm{P}}(A\mid B) + {\rm{P}}(\bar B) \cdot {\rm{P}}(A\mid \bar B) = \frac{1}{2} \cdot \frac{6}{{13}} + \frac{1}{2} \cdot \frac{{10}}{{21}} = \frac{{128}}{{273}}.\)

Vậy xác suất để viên bi được lấy có màu đỏ là \(\frac{{128}}{{273}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét các biến cố: \(A\): "Lấy được 1 chính phẩm từ thùng I sang thùng II";

   \(B\): "Lây được 1 chính phẩm từ thùng II".

Khi đó, \(P\left( A \right) = \frac{5}{9};\,\,P\left( {\overline A } \right) = \frac{4}{9};\,\,P\left( {B|A} \right) = \frac{7}{{15}};\,\,P\left( {B|\overline A } \right) = \frac{6}{{15}} = \frac{2}{5}\).

Theo công thức xác suất toàn phần, xác suất của biến cố \(B\) là: \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = \frac{5}{9}.\frac{7}{{15}} + \frac{4}{9}.\frac{2}{5} \approx 0,44\).

Lời giải

Xét các biến cố:

A: "Chọn được người không bị bệnh tiểu đường";

\(B\) : "Chọn được người cao tuổi là nam";

\(\bar B\) : "Chọn được người cao tuổi là nữ".

Từ giả thiết, ta có: \({\rm{P}}(B) = \frac{{260}}{{500}} = 0,52;{\rm{P}}(A\mid B) = 1 - 0,4 = 0,6\);

\({\rm{P}}(\bar B) = \frac{{240}}{{500}} = 0,48;{\rm{P}}(A\mid \bar B) = 1 - 0,55 = 0,45.{\rm{ }}\)

Theo công thức xác suất toàn phần, ta có:

\({\rm{P}}(A) = {\rm{P}}(B) \cdot {\rm{P}}(A\mid B) + {\rm{P}}(\bar B) \cdot {\rm{P}}(A\mid \bar B) = 0,52 \cdot 0,6 + 0,48 \cdot 0,45 = 0,528.{\rm{ }}\)

Vậy xác suất để chọn được một người không bị bệnh tiểu đường là 0,528 .