Câu hỏi:

25/08/2025 19 Lưu

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình sau:

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình sau:  Số giao điểm của đồ thị hàm số đã cho với trục hoành là (ảnh 1)

Số giao điểm của đồ thị hàm số đã cho với trục hoành là

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Từ bảng biến thiên ta thấy phương trình \(f\left( x \right) = 0\) có đúng 1 nghiệm. Vậy đồ thị hàm số đã cho cắt trục hoành tại đúng 1 điểm. Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Ta có \[y' = 3{x^2} + 2ax + b\].

Đồ thị hàm số đi qua điểm \[\left( {0;2} \right)\]; hàm số có hai điểm cực trị là \[x = 0\] và \[x = 2\], nên ta có hệ phương trình:

\[\left\{ \begin{array}{l}c = 2\\b = 0\\12 + 4a + b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - 3\\b = 0\\c = 2\end{array} \right.\].

Vậy \[a + 2b + 3c =  - 3 + 6 = 3\].

Đáp án: 3.

Lời giải

Lời giải

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\). Gọi \(O,O'\) lần lượt là tâm của hình vuông \(ABCD\) và \(A'B'C'D'\). Độ dài vec tơ \(\overrightarrow {OA'}  + \overrightarrow {OB'}  + \overrightarrow {OC'}  + \overrightarrow {OD'} \) bằng (ảnh 1)

Ta có \(\overrightarrow {OA'}  + \overrightarrow {OB'}  + \overrightarrow {OC'}  + \overrightarrow {OD'}  = \left( {\overrightarrow {OA'}  + \overrightarrow {OC'} } \right) + \left( {\overrightarrow {OB'}  + \overrightarrow {OD'} } \right) = 2\overrightarrow {OO'}  + 2\overrightarrow {OO'}  = 4\overrightarrow {OO'} \).

Suy ra \(\left| {\overrightarrow {OA'}  + \overrightarrow {OB'}  + \overrightarrow {OC'}  + \overrightarrow {OD'} } \right| = 4\left| {\overrightarrow {OO'} } \right| = 4a\). Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP