Cho hàm số bậc ba \[y = {x^3} + a{x^2} + bx + c\] có đồ thị như hình vẽ dưới đây.
Tính giá trị của \[S = a + 2b + 3c\].
Cho hàm số bậc ba \[y = {x^3} + a{x^2} + bx + c\] có đồ thị như hình vẽ dưới đây.
![Cho hàm số bậc ba \[y = {x^3} + a{x^2} + bx + c\] có đồ thị như hình vẽ dưới đây. Tính giá trị của \[S = a + 2b + 3c\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/08/blobid11-1756117782.png)
Tính giá trị của \[S = a + 2b + 3c\].
Quảng cáo
Trả lời:

Lời giải
Ta có \[y' = 3{x^2} + 2ax + b\].
Đồ thị hàm số đi qua điểm \[\left( {0;2} \right)\]; hàm số có hai điểm cực trị là \[x = 0\] và \[x = 2\], nên ta có hệ phương trình:
\[\left\{ \begin{array}{l}c = 2\\b = 0\\12 + 4a + b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 3\\b = 0\\c = 2\end{array} \right.\].
Vậy \[a + 2b + 3c = - 3 + 6 = 3\].
Đáp án: 3.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải

Ta có \(\overrightarrow {OA'} + \overrightarrow {OB'} + \overrightarrow {OC'} + \overrightarrow {OD'} = \left( {\overrightarrow {OA'} + \overrightarrow {OC'} } \right) + \left( {\overrightarrow {OB'} + \overrightarrow {OD'} } \right) = 2\overrightarrow {OO'} + 2\overrightarrow {OO'} = 4\overrightarrow {OO'} \).
Suy ra \(\left| {\overrightarrow {OA'} + \overrightarrow {OB'} + \overrightarrow {OC'} + \overrightarrow {OD'} } \right| = 4\left| {\overrightarrow {OO'} } \right| = 4a\). Chọn A.
Lời giải
Lời giải

Theo hình vẽ ta có các vectơ \[\overrightarrow {AS} ,\,\overrightarrow {BS} ,\,\overrightarrow {CS} ,\,\overrightarrow {DS} \] biểu thị các lực căng \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} ,\,\overrightarrow {{F_4}} \).
Khi đó, \(\overrightarrow {{F_1}} + \,\overrightarrow {{F_2}} + \,\overrightarrow {{F_3}} + \,\overrightarrow {{F_4}} = \overrightarrow {AS} + \,\overrightarrow {BS} + \,\overrightarrow {CS} + \,\overrightarrow {DS} \)
\( = - \left( {\overrightarrow {SA} + \,\overrightarrow {SB} + \,\overrightarrow {SC} + \,\overrightarrow {SD} } \right) = - \left[ {\left( {\overrightarrow {SA} + \,\overrightarrow {SC} } \right) + \,\left( {\overrightarrow {SB} + \,\overrightarrow {SD} } \right)} \right]\)
\( = - \left( {2\overrightarrow {SO} + 2\overrightarrow {SO} } \right) = - 4\overrightarrow {SO} \).
Vì các đoạn dây cáp có độ dài bằng nhau và góc tạo bởi hai đoạn dây cáp đối diện nhau là 60° nên tam giác \[SAC\] cân và \[\widehat {ASC} = 60^\circ \], do đó tam giác \[SAC\] đều, suy ra \[SO = SA \cdot \frac{{\sqrt 3 }}{2}\].
Khi đó, \(\left| {\overrightarrow {{F_1}} + \,\overrightarrow {{F_2}} + \,\overrightarrow {{F_3}} + \,\overrightarrow {{F_4}} } \right| = 4SO = 4 \cdot SA \cdot \frac{{\sqrt 3 }}{2} = 4 \cdot 5\,000 \cdot \frac{{\sqrt 3 }}{2} = 10\,000\sqrt 3 \,\,{\rm{(N)}}{\rm{.}}\)
Ta có \[\overrightarrow P = m \cdot \overrightarrow g \], suy ra \[P = m \cdot g = 10m\].
Để cần cẩu nâng được thùng hàng thì \(\left| {\overrightarrow {{F_1}} + \,\overrightarrow {{F_2}} + \,\overrightarrow {{F_3}} + \,\overrightarrow {{F_4}} } \right| \ge P\).
Suy ra \(10\,000\sqrt 3 \ge 10m \Rightarrow m \le 1\,000\sqrt 3 \,\,{\rm{(kg)}}\).
Vậy \(m \le 1\,000\sqrt 3 \,\,{\rm{(kg)}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.