Câu hỏi:

25/08/2025 29 Lưu

Cho hàm số bậc ba \[y = {x^3} + a{x^2} + bx + c\] có đồ thị như hình vẽ dưới đây.

Cho hàm số bậc ba \[y = {x^3} + a{x^2} + bx + c\] có đồ thị như hình vẽ dưới đây.  Tính giá trị của \[S = a + 2b + 3c\]. (ảnh 1)

Tính giá trị của \[S = a + 2b + 3c\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Ta có \[y' = 3{x^2} + 2ax + b\].

Đồ thị hàm số đi qua điểm \[\left( {0;2} \right)\]; hàm số có hai điểm cực trị là \[x = 0\] và \[x = 2\], nên ta có hệ phương trình:

\[\left\{ \begin{array}{l}c = 2\\b = 0\\12 + 4a + b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - 3\\b = 0\\c = 2\end{array} \right.\].

Vậy \[a + 2b + 3c =  - 3 + 6 = 3\].

Đáp án: 3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\). Gọi \(O,O'\) lần lượt là tâm của hình vuông \(ABCD\) và \(A'B'C'D'\). Độ dài vec tơ \(\overrightarrow {OA'}  + \overrightarrow {OB'}  + \overrightarrow {OC'}  + \overrightarrow {OD'} \) bằng (ảnh 1)

Ta có \(\overrightarrow {OA'}  + \overrightarrow {OB'}  + \overrightarrow {OC'}  + \overrightarrow {OD'}  = \left( {\overrightarrow {OA'}  + \overrightarrow {OC'} } \right) + \left( {\overrightarrow {OB'}  + \overrightarrow {OD'} } \right) = 2\overrightarrow {OO'}  + 2\overrightarrow {OO'}  = 4\overrightarrow {OO'} \).

Suy ra \(\left| {\overrightarrow {OA'}  + \overrightarrow {OB'}  + \overrightarrow {OC'}  + \overrightarrow {OD'} } \right| = 4\left| {\overrightarrow {OO'} } \right| = 4a\). Chọn A.

Lời giải

Lời giải

Hỏi cần cẩu nâng được thùng hàng có khối lượng (đơn vị: kg) tối đa là bao nhiêu? (ảnh 2)

Theo hình vẽ ta có các vectơ \[\overrightarrow {AS} ,\,\overrightarrow {BS} ,\,\overrightarrow {CS} ,\,\overrightarrow {DS} \] biểu thị các lực căng \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} ,\,\overrightarrow {{F_4}} \).

Khi đó, \(\overrightarrow {{F_1}}  + \,\overrightarrow {{F_2}}  + \,\overrightarrow {{F_3}}  + \,\overrightarrow {{F_4}}  = \overrightarrow {AS}  + \,\overrightarrow {BS}  + \,\overrightarrow {CS}  + \,\overrightarrow {DS} \)

\( =  - \left( {\overrightarrow {SA}  + \,\overrightarrow {SB}  + \,\overrightarrow {SC}  + \,\overrightarrow {SD} } \right) =  - \left[ {\left( {\overrightarrow {SA}  + \,\overrightarrow {SC} } \right) + \,\left( {\overrightarrow {SB}  + \,\overrightarrow {SD} } \right)} \right]\)

\( =  - \left( {2\overrightarrow {SO}  + 2\overrightarrow {SO} } \right) =  - 4\overrightarrow {SO} \).

Vì các đoạn dây cáp có độ dài bằng nhau và góc tạo bởi hai đoạn dây cáp đối diện nhau là 60° nên tam giác \[SAC\] cân và \[\widehat {ASC} = 60^\circ \], do đó tam giác \[SAC\] đều, suy ra \[SO = SA \cdot \frac{{\sqrt 3 }}{2}\].

Khi đó, \(\left| {\overrightarrow {{F_1}}  + \,\overrightarrow {{F_2}}  + \,\overrightarrow {{F_3}}  + \,\overrightarrow {{F_4}} } \right| = 4SO = 4 \cdot SA \cdot \frac{{\sqrt 3 }}{2} = 4 \cdot 5\,000 \cdot \frac{{\sqrt 3 }}{2} = 10\,000\sqrt 3 \,\,{\rm{(N)}}{\rm{.}}\)

Ta có \[\overrightarrow P  = m \cdot \overrightarrow g \], suy ra \[P = m \cdot g = 10m\].

Để cần cẩu nâng được thùng hàng thì \(\left| {\overrightarrow {{F_1}}  + \,\overrightarrow {{F_2}}  + \,\overrightarrow {{F_3}}  + \,\overrightarrow {{F_4}} } \right| \ge P\).

Suy ra \(10\,000\sqrt 3  \ge 10m \Rightarrow m \le 1\,000\sqrt 3 \,\,{\rm{(kg)}}\).

Vậy \(m \le 1\,000\sqrt 3 \,\,{\rm{(kg)}}\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP