Cho hàm số bậc ba \[y = {x^3} + a{x^2} + bx + c\] có đồ thị như hình vẽ dưới đây.
Tính giá trị của \[S = a + 2b + 3c\].
Cho hàm số bậc ba \[y = {x^3} + a{x^2} + bx + c\] có đồ thị như hình vẽ dưới đây.
![Cho hàm số bậc ba \[y = {x^3} + a{x^2} + bx + c\] có đồ thị như hình vẽ dưới đây. Tính giá trị của \[S = a + 2b + 3c\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/08/blobid11-1756117782.png)
Tính giá trị của \[S = a + 2b + 3c\].
Quảng cáo
Trả lời:

Lời giải
Ta có \[y' = 3{x^2} + 2ax + b\].
Đồ thị hàm số đi qua điểm \[\left( {0;2} \right)\]; hàm số có hai điểm cực trị là \[x = 0\] và \[x = 2\], nên ta có hệ phương trình:
\[\left\{ \begin{array}{l}c = 2\\b = 0\\12 + 4a + b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 3\\b = 0\\c = 2\end{array} \right.\].
Vậy \[a + 2b + 3c = - 3 + 6 = 3\].
Đáp án: 3.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải

Ta có \(\overrightarrow {OA'} + \overrightarrow {OB'} + \overrightarrow {OC'} + \overrightarrow {OD'} = \left( {\overrightarrow {OA'} + \overrightarrow {OC'} } \right) + \left( {\overrightarrow {OB'} + \overrightarrow {OD'} } \right) = 2\overrightarrow {OO'} + 2\overrightarrow {OO'} = 4\overrightarrow {OO'} \).
Suy ra \(\left| {\overrightarrow {OA'} + \overrightarrow {OB'} + \overrightarrow {OC'} + \overrightarrow {OD'} } \right| = 4\left| {\overrightarrow {OO'} } \right| = 4a\). Chọn A.
Lời giải
Lời giải
Điều kiện: \(2 - {x^2} \ge 0 \Leftrightarrow - \sqrt 2 \le x \le \sqrt 2 \).
Tập xác định của hàm số \(y = x + \sqrt {2 - {x^2}} \) là \(D = \left[ { - \sqrt 2 ;\,\sqrt 2 } \right]\).
Ta có \(y' = 1 - \frac{x}{{\sqrt {2 - {x^2}} }}\).
\(y' = 0 \Leftrightarrow \sqrt {2 - {x^2}} = x \Rightarrow x = 1 \in \left( { - \sqrt 2 ;\,\sqrt 2 } \right)\).
\(y\left( { - \sqrt 2 } \right) = - \sqrt 2 \); \(y\left( {\sqrt 2 } \right) = \sqrt 2 \); \(y\left( 1 \right) = 2\).
Khi đó, \[M = \max y = y\left( 1 \right) = 2;\,\,m = \min y = y\left( { - \sqrt 2 } \right) = - \sqrt 2 \].
Vậy \(M - \sqrt 2 \cdot m = 2 - \sqrt 2 \cdot \,\left( { - \sqrt 2 } \right) = 4\).
Đáp án: 4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\left( {3;1} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.