Câu hỏi:

25/08/2025 18 Lưu

C. TRẢ LỜI NGẮN.

Số lượng sản phẩm bán được của một công ty trong \(x\) (tháng) được tính theo công thức \(S\left( x \right) = 500\left( {3 - \frac{7}{{3 + x}}} \right)\), trong đó \(x \ge 1\). Số lượng sản phẩm được bán của công ty đó trong \(x\) (tháng) khi \(x\) đủ lớn gần bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Ta có \(\mathop {\lim }\limits_{x \to  + \infty } S\left( x \right) = \mathop {\lim }\limits_{x \to  + \infty } 500\left( {3 - \frac{7}{{3 + x}}} \right) = 1500\).

Vậy đồ thị hàm số \(y = S\left( x \right)\) nhận đường thẳng \(y = 1500\) làm tiệm cận ngang, tức là khi \(x\) càng lớn lượng sản phẩm bán ra sẽ tiến gần đến mức \(1500\) (sản phẩm/tháng).

Đáp án: 1500.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Ta có \[y' = 3{x^2} + 2ax + b\].

Đồ thị hàm số đi qua điểm \[\left( {0;2} \right)\]; hàm số có hai điểm cực trị là \[x = 0\] và \[x = 2\], nên ta có hệ phương trình:

\[\left\{ \begin{array}{l}c = 2\\b = 0\\12 + 4a + b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - 3\\b = 0\\c = 2\end{array} \right.\].

Vậy \[a + 2b + 3c =  - 3 + 6 = 3\].

Đáp án: 3.

Lời giải

Lời giải

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\). Gọi \(O,O'\) lần lượt là tâm của hình vuông \(ABCD\) và \(A'B'C'D'\). Độ dài vec tơ \(\overrightarrow {OA'}  + \overrightarrow {OB'}  + \overrightarrow {OC'}  + \overrightarrow {OD'} \) bằng (ảnh 1)

Ta có \(\overrightarrow {OA'}  + \overrightarrow {OB'}  + \overrightarrow {OC'}  + \overrightarrow {OD'}  = \left( {\overrightarrow {OA'}  + \overrightarrow {OC'} } \right) + \left( {\overrightarrow {OB'}  + \overrightarrow {OD'} } \right) = 2\overrightarrow {OO'}  + 2\overrightarrow {OO'}  = 4\overrightarrow {OO'} \).

Suy ra \(\left| {\overrightarrow {OA'}  + \overrightarrow {OB'}  + \overrightarrow {OC'}  + \overrightarrow {OD'} } \right| = 4\left| {\overrightarrow {OO'} } \right| = 4a\). Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP