Câu hỏi:

25/08/2025 57 Lưu

Để loại bỏ \(x\% \) chất gây ô nhiễm môi trường từ khí thải của một nhà máy, người ta ước tính chi phí (triệu đồng) cần bỏ ra được mô hình hoá bởi hàm số có dạng \(C\left( x \right) = \frac{{ax + b}}{{ - x + d}}\) (như hình vẽ), \(\left( {0 \le x < 100} \right).\) Tính chi phí chênh lệch (tỉ đồng) phải bỏ ra để loại bỏ \(90\% \) và loại bỏ \(99\% \) chất gây ô nhiễm từ khí thải của nhà máy.

Tính chi phí chênh lệch (tỉ đồng) phải bỏ ra để loại bỏ \(90\% \) và loại bỏ \(99\% \) chất gây ô nhiễm từ khí thải của nhà máy. (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Ta có \(C\left( x \right) = \frac{{ax + b}}{{ - x + d}} \cdot \) Từ đồ thị suy ra \(b = 0\,;d = 100\,;\,a = 200 \Rightarrow C\left( x \right) = \frac{{200x}}{{100 - x}} \cdot \)

Chi phí chênh lệch là \(\Delta C = \left| {C\left( {99} \right) - C\left( {90} \right)} \right| = \left| {\frac{{200 \cdot 99}}{{100 - 99}} - \frac{{200 \cdot 90}}{{100 - 90}}} \right| = 18\,000\) (triệu đồng) \( = 18\) (tỉ đồng).

Đáp án: 18.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \[M\left( {{x_0};{y_0}} \right) \in \left( C \right) \Rightarrow M\left( {{x_0};\frac{{x_0^2 + 4{x_0} + 5}}{{{x_0} + 2}}} \right)\].

Gọi \[\left( d \right)\] là khoảng cách từ \[M\] đến đường thẳng \[3x + y + 6 = 0\].

Ta có \[d = \frac{1}{{\sqrt {10} }}\left| {\frac{{4x_0^2 + 16{x_0} + 17}}{{{x_0} + 2}}} \right| = \frac{1}{{\sqrt {10} }}\left| {4\left( {{x_0} + 2} \right) + \frac{1}{{{x_0} + 2}}} \right| \ge \frac{4}{{\sqrt {10} }}\].

Đẳng thức xảy ra \[ \Leftrightarrow 4\left| {{x_0} + 2} \right| = \frac{1}{{\left| {{x_0} + 2} \right|}} \Leftrightarrow \left[ \begin{array}{l}{x_0} = \frac{{ - 3}}{2} \Rightarrow {y_0} = \frac{5}{2}\\{x_0} = \frac{{ - 5}}{2} \Rightarrow {y_0} =  - \frac{5}{2}\end{array} \right.\].

Vậy có hai điểm thoả yêu cầu bài toán là \[{M_1}\left( {\frac{{ - 3}}{2};\frac{5}{2}} \right)\] và \[{M_2}\left( {\frac{{ - 5}}{2};\frac{{ - 5}}{2}} \right)\].

Câu 2

Lời giải

Lời giải

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Tìm \[\overrightarrow {SD}  + \overrightarrow {AB}  + \overrightarrow {CA} \]. (ảnh 1)

Ta có \[\overrightarrow {SD}  + \overrightarrow {AB}  + \overrightarrow {CA}  = \overrightarrow {SD}  + \overrightarrow {DC}  + \overrightarrow {CA}  = \overrightarrow {SC}  + \overrightarrow {CA}  = \overrightarrow {SA} \]. Chọn A.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP