PHẦN II. TỰ LUẬN
Cho đồ thị hàm số \(y = 2{e^{ - {x^2}}}\) như hình vẽ. \(ABCD\) là hình chữ nhật thay đổi sao cho \(B\) và \(C\) luôn thuộc đồ thị hàm số đã cho và \(AD\) nằm trên trục hoành. Diện tích hình chữ nhật \(ABCD\) có giá trị lớn nhất bằng bao nhiêu?
PHẦN II. TỰ LUẬN
Cho đồ thị hàm số \(y = 2{e^{ - {x^2}}}\) như hình vẽ. \(ABCD\) là hình chữ nhật thay đổi sao cho \(B\) và \(C\) luôn thuộc đồ thị hàm số đã cho và \(AD\) nằm trên trục hoành. Diện tích hình chữ nhật \(ABCD\) có giá trị lớn nhất bằng bao nhiêu?

Quảng cáo
Trả lời:

Lời giải
Giả sử điểm \(C\left( {x;2\,{{\rm{e}}^{ - {x^2}}}} \right)\) với \(x > 0\).
Diện tích của hình chữ nhật \(ABCD\) là \(f\left( x \right) = 4x \cdot {{\rm{e}}^{ - {x^2}}}\).
Ta có \(f'\left( x \right) = 4{{\rm{e}}^{ - {x^2}}} - 8{x^2}{{\rm{e}}^{ - {x^2}}}\)\( = 4{{\rm{e}}^{ - {x^2}}}\left( {1 - 2{x^2}} \right)\).
\(f'\left( x \right) = 0\) \( \Rightarrow \left[ \begin{array}{l}x = \frac{{\sqrt 2 }}{2}\,\,\,\,\,\left( n \right)\\x = - \frac{{\sqrt 2 }}{2}\,\,\,\,\,\,\left( l \right)\end{array} \right.\).
Bảng biến thiên

Vậy .
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \[M\left( {{x_0};{y_0}} \right) \in \left( C \right) \Rightarrow M\left( {{x_0};\frac{{x_0^2 + 4{x_0} + 5}}{{{x_0} + 2}}} \right)\].
Gọi \[\left( d \right)\] là khoảng cách từ \[M\] đến đường thẳng \[3x + y + 6 = 0\].
Ta có \[d = \frac{1}{{\sqrt {10} }}\left| {\frac{{4x_0^2 + 16{x_0} + 17}}{{{x_0} + 2}}} \right| = \frac{1}{{\sqrt {10} }}\left| {4\left( {{x_0} + 2} \right) + \frac{1}{{{x_0} + 2}}} \right| \ge \frac{4}{{\sqrt {10} }}\].
Đẳng thức xảy ra \[ \Leftrightarrow 4\left| {{x_0} + 2} \right| = \frac{1}{{\left| {{x_0} + 2} \right|}} \Leftrightarrow \left[ \begin{array}{l}{x_0} = \frac{{ - 3}}{2} \Rightarrow {y_0} = \frac{5}{2}\\{x_0} = \frac{{ - 5}}{2} \Rightarrow {y_0} = - \frac{5}{2}\end{array} \right.\].
Vậy có hai điểm thoả yêu cầu bài toán là \[{M_1}\left( {\frac{{ - 3}}{2};\frac{5}{2}} \right)\] và \[{M_2}\left( {\frac{{ - 5}}{2};\frac{{ - 5}}{2}} \right)\].
Câu 2
A. Đồ thị hàm số có đường tiệm cận đứng \[x = 1,\] đường tiệm cận ngang \[y = 2.\]
B. Đồ thị hàm số có đường tiệm cận đứng \[x = 2,\] đường tiệm cận ngang \[y = 1.\]
C. Đồ thị hàm số có đường tiệm cận đứng \[x = 2,\] đường tiệm cận ngang \[y = 0.\]
Lời giải
Lời giải
Quan sát hình, ta thấy đồ thị hàm số có đường tiệm cận đứng \[x = 1,\] đường tiệm cận ngang \[y = 2.\] Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(\left( { - 2\,; - 3} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.