Câu hỏi:

25/08/2025 209 Lưu

Có ba lực cùng tác dụng vào một vật. Hai trong ba lực này hợp với nhau một góc \(120^\circ \) và đều có độ lớn bằng \(30\,{\rm{N}}\). Lực thứ ba vuông góc với mặt phẳng tạo bởi hai lực đã cho và có độ lớn bằng \(40{\rm{N}}\). Tính hợp lực của ba lực trên.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Có ba lực cùng tác dụng vào một vật. Hai trong ba lực này hợp với nhau một góc \(120^\circ \) và đều có độ lớn bằng \(30\,{\rm{N}}\). Lực thứ ba vuông góc với mặt phẳng tạo bởi hai lực đã cho và có độ lớn bằng \(40{\rm{N}}\). Tính hợp lực của ba lực trên. (ảnh 1)

Gọi \(\overrightarrow {{F_1}} ;\overrightarrow {{F_2}} ;\overrightarrow {{F_3}} \) là ba lực tác động vào vật đặt tại điểm \(O\) lần lượt có độ lớn là \(30{\rm{N}};\,30{\rm{N}};\,40{\rm{N}}\).

Vẽ \(\overrightarrow {OA}  = \overrightarrow {{F_1}} ;\,\overrightarrow {OB}  = \overrightarrow {{F_2}} ;\,\overrightarrow {OC}  = \overrightarrow {{F_3}} \).

Dựng các hình bình hành \(OADB\) và \(ODEC\).

Hợp lực tác dụng vào vật là \(\overrightarrow F  = \overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = \overrightarrow {OD}  + \overrightarrow {OC}  = \overrightarrow {OE} \).

Hình bình hành \(OADB\) có \(\widehat {AOB} = 120^\circ \) và \(OA = OB\) nên \(\Delta OBD\) đều, suy ra \(OB = OD = 30{\rm{N}}\).

Vì \(OC \bot \left( {OAB} \right)\) nên \(OC \bot OD\), suy ra \(ODEC\) là hình chữ nhật.

Do đó, \(\Delta ODE\) vuông tại \(D\).

Ta có \(O{E^2} = O{C^2} + O{D^2} = {40^2} + {30^2} = {50^2}\), suy ra \(OE = 50\).

Vậy hợp lực có độ lớn là \(F = 50{\rm{N}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \[M\left( {{x_0};{y_0}} \right) \in \left( C \right) \Rightarrow M\left( {{x_0};\frac{{x_0^2 + 4{x_0} + 5}}{{{x_0} + 2}}} \right)\].

Gọi \[\left( d \right)\] là khoảng cách từ \[M\] đến đường thẳng \[3x + y + 6 = 0\].

Ta có \[d = \frac{1}{{\sqrt {10} }}\left| {\frac{{4x_0^2 + 16{x_0} + 17}}{{{x_0} + 2}}} \right| = \frac{1}{{\sqrt {10} }}\left| {4\left( {{x_0} + 2} \right) + \frac{1}{{{x_0} + 2}}} \right| \ge \frac{4}{{\sqrt {10} }}\].

Đẳng thức xảy ra \[ \Leftrightarrow 4\left| {{x_0} + 2} \right| = \frac{1}{{\left| {{x_0} + 2} \right|}} \Leftrightarrow \left[ \begin{array}{l}{x_0} = \frac{{ - 3}}{2} \Rightarrow {y_0} = \frac{5}{2}\\{x_0} = \frac{{ - 5}}{2} \Rightarrow {y_0} =  - \frac{5}{2}\end{array} \right.\].

Vậy có hai điểm thoả yêu cầu bài toán là \[{M_1}\left( {\frac{{ - 3}}{2};\frac{5}{2}} \right)\] và \[{M_2}\left( {\frac{{ - 5}}{2};\frac{{ - 5}}{2}} \right)\].

Lời giải

Lời giải

Giả sử điểm \(C\left( {x;2\,{{\rm{e}}^{ - {x^2}}}} \right)\) với \(x > 0\).

Diện tích của hình chữ nhật \(ABCD\) là \(f\left( x \right) = 4x \cdot {{\rm{e}}^{ - {x^2}}}\).

Ta có \(f'\left( x \right) = 4{{\rm{e}}^{ - {x^2}}} - 8{x^2}{{\rm{e}}^{ - {x^2}}}\)\( = 4{{\rm{e}}^{ - {x^2}}}\left( {1 - 2{x^2}} \right)\).

\(f'\left( x \right) = 0\) \( \Rightarrow \left[ \begin{array}{l}x = \frac{{\sqrt 2 }}{2}\,\,\,\,\,\left( n \right)\\x =  - \frac{{\sqrt 2 }}{2}\,\,\,\,\,\,\left( l \right)\end{array} \right.\).

Bảng biến thiên

Cho đồ thị hàm số \(y = 2{e^{ - {x^2}}}\) như hình vẽ. \(ABCD\) là hình chữ nhật thay đổi sao cho \(B\) và \(C\) luôn thuộc đồ thị hàm số đã cho và \(AD\) nằm trên trục hoành. Diện tích hình chữ nhật \(ABCD\) có giá trị lớn nhất bằng bao nhiêu? (ảnh 2)

Vậy maxSABCD=22e.

Câu 3

A. Đồ thị hàm số có đường tiệm cận đứng \[x = 1,\] đường tiệm cận ngang \[y = 2.\]

B. Đồ thị hàm số có đường tiệm cận đứng \[x = 2,\] đường tiệm cận ngang \[y = 1.\]

C. Đồ thị hàm số có đường tiệm cận đứng \[x = 2,\] đường tiệm cận ngang \[y = 0.\]

D. Đồ thị hàm số có đường tiệm cận đứng \[x = 0,\] đường tiệm cận ngang \[y = 1.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\left( { - 2\,; - 3} \right).\)    

B. \(\left( {2\,; - 3} \right).\) 
C. \(\left( { - 2\,;3} \right).\)      
D. \(\left( {2\,\,;\,\,3} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP