Câu hỏi:

26/08/2025 38 Lưu

Phần II. Trắc nghiệm đúng, sai

(Gồm 5 câu hỏi, mỗi câu hỏi có 4 ý khẳng định, yêu cầu lựa chọn đúng hoặc sai cho mỗi khẳng định)

Cho biểu thức \(P = {\left( {2x + 3} \right)^2} + {\left( {3x - 7} \right)^2} + 2\left( {2x + 3} \right)\left( {3x - 7} \right)\).

a) Thu gọn được biểu thức \(P = {\left( {5x - 4} \right)^2}\).

b) Giá trị biểu thức P tại \(x = 2\) bằng \(6.\)

c) Cho \(B = 25{x^2} - 30x + 9,\) có hai giá trị của x để \(P - B = 0.\)

d) Có hai giá trị của x để \(P < 0.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

         Lời giải

a) Đúng.

Ta có: \(P = {\left( {2x + 3} \right)^2} + 2\left( {2x + 3} \right)\left( {3x - 7} \right) + {\left( {3x - 7} \right)^2} = {\left( {2x + 3 + 3x - 7} \right)^2} = {\left( {5x - 4} \right)^2}\).

b) Sai.

Thay \(x = 2\) vào P ta có: \(P = {\left( {5 \cdot 2 - 4} \right)^2} = {6^2} = 36.\)

c) Sai.

Ta có: \(B = {\left( {5x} \right)^2} - 2 \cdot 5x \cdot 3 + {3^2} = {\left( {5x - 3} \right)^2}.\)

Để \(P - B = 0\) thì \({\left( {5x - 4} \right)^2} - {\left( {5x - 3} \right)^2} = 0\)

\(\left( {5x - 4 - 5x + 3} \right)\left( {5x - 4 + 5x - 3} \right) = 0\)

\( - \left( {10x - 7} \right) = 0\)

\(x = \frac{7}{{10}}\)

Vậy có một giá trị của x để \(P - B = 0.\)

d) Sai.

Vì \(P = {\left( {5x - 4} \right)^2}\) nên \(P \ge 0\) với mọi giá trị thực của x. Vậy không có giá trị nào của x để \(P < 0.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Đáp án đúng là: A

Ta có: \(\left( {2a - 6} \right)\left( {2a + 6} \right) - 4{a^2} + 3a = {\left( {2a} \right)^2} - {6^2} - 4{a^2} + 3a = 4{a^2} - 36 - 4{a^2} + 3a = 3a - 36.\)

Do đó, đa thức thu được có bậc \(1.\)

Lời giải

Lời giải

a) Đúng.

Diện tích của khu vườn là: \({40^2} = 1\;600{\rm{ }}\left( {{{\rm{m}}^2}} \right){\rm{.}}\)

b) Sai.

Khu đất còn lại là hình vuông có cạnh là: \(40 - 2x{\rm{ }}\left( {\rm{m}} \right){\rm{.}}\)

c) Sai.

Diện tích khu đất còn lại là: \({\left( {40 - 2x} \right)^2}{\rm{ }}\left( {{{\rm{m}}^2}} \right).\)

d) Sai.

Vì diện tích phần trồng cây ăn quả xung quanh vườn là \(576{\rm{ }}{{\rm{m}}^2}\) nên \({\left( {40 - 2x} \right)^2} = 1\;600 - 576 = 1\;024\) hay \({\left( {40 - 2x} \right)^2} = {32^2}\)

\({\left( {40 - 2x} \right)^2} - {32^2} = 0\)

\(\left( {40 - 2x - 32} \right)\left( {40 - 2x + 32} \right) = 0\)

\(\left( {8 - 2x} \right)\left( {72 - 2x} \right) = 0\)

Vì khu vườn ban đầu có độ dài cạnh bằng \(40{\rm{ m}}\) nên \(2x < 40,\) do đó \(72 - 2x > 0.\)

Suy ra \(8 - 2x = 0\) nên \(x = 4{\rm{ m}}{\rm{.}}\)

Do đó, nếu diện tích trồng cây ăn quả là \(576{\rm{ }}{{\rm{m}}^2}\) thì bề rộng phần trồng cây ăn quả xung quanh vườn bằng \(4{\rm{ m}}{\rm{.}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP