yêu cầu lựa chọn đúng hoặc sai cho mỗi khẳng định
Cho tam giác \(ABC\) có cạnh \(BC = 6x{\rm{ }}\left( {{\rm{cm}}} \right),\) đường cao \(AH = 3x\;\left( {{\rm{cm}}} \right)\) với \(x > 0\) và hình vuông \(MNPQ\) có \(MN = 2y{\rm{ }}\left( {{\rm{cm}}} \right)\) với \(y > 0\) (như hình vẽ).
a) Diện tích tam giác \(ABC\) bằng \(9{x^2}{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right){\rm{.}}\)
b) Diện tích hình vuông \(MNPQ\) là \(4{y^2}{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right){\rm{.}}\)
c) Tổng diện tích các tam giác \(AMN,\;BMQ,\;CNP\) là \(\left( {2x - y} \right)\left( {2x + y} \right)\;\left( {{\rm{c}}{{\rm{m}}^2}} \right){\rm{.}}\)
d) Nếu \(3x - 2y = 1\;\left( {{\rm{cm}}} \right);\;3x + 2y = 17\;\left( {{\rm{cm}}} \right)\) thì tổng diện tích các tam giác \(AMN,\;BMQ,\;CNP\) là \({\rm{34}}\,\;{\rm{c}}{{\rm{m}}^2}.\)
yêu cầu lựa chọn đúng hoặc sai cho mỗi khẳng định
Cho tam giác \(ABC\) có cạnh \(BC = 6x{\rm{ }}\left( {{\rm{cm}}} \right),\) đường cao \(AH = 3x\;\left( {{\rm{cm}}} \right)\) với \(x > 0\) và hình vuông \(MNPQ\) có \(MN = 2y{\rm{ }}\left( {{\rm{cm}}} \right)\) với \(y > 0\) (như hình vẽ).

a) Diện tích tam giác \(ABC\) bằng \(9{x^2}{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right){\rm{.}}\)
b) Diện tích hình vuông \(MNPQ\) là \(4{y^2}{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right){\rm{.}}\)
c) Tổng diện tích các tam giác \(AMN,\;BMQ,\;CNP\) là \(\left( {2x - y} \right)\left( {2x + y} \right)\;\left( {{\rm{c}}{{\rm{m}}^2}} \right){\rm{.}}\)
d) Nếu \(3x - 2y = 1\;\left( {{\rm{cm}}} \right);\;3x + 2y = 17\;\left( {{\rm{cm}}} \right)\) thì tổng diện tích các tam giác \(AMN,\;BMQ,\;CNP\) là \({\rm{34}}\,\;{\rm{c}}{{\rm{m}}^2}.\)
Quảng cáo
Trả lời:
Lời giải
a) Đúng.
Diện tích tam giác \(ABC\) là: \({S_1} = \frac{1}{2} \cdot AH \cdot BC = \frac{1}{2} \cdot 3x \cdot 6x = 9{x^2}{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right){\rm{.}}\)
b) Đúng.
Diện tích hình vuông \(MNPQ\) là: \({S_2} = M{N^2} = \left( {2y} \right) = 4{y^2}{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right){\rm{.}}\)
c) Sai.
Tổng diện tích các tam giác \(AMN,\;BMQ,\;CNP\) là:
\({S_1} - {S_2} = 9{x^2} - 4{y^2} = \left( {3x - 2y} \right)\left( {3x + 2y} \right)\;\;\left( {{\rm{c}}{{\rm{m}}^2}} \right){\rm{.}}\)
d) Sai.
Với \(3x - 2y = 1\;\left( {{\rm{cm}}} \right);\;3x + 2y = 17\;\left( {{\rm{cm}}} \right)\) thì tổng các tam giác \(AMN,\;BMQ,\;CNP\) là:
\(1 \cdot 17 = 17\;\;\left( {{\rm{c}}{{\rm{m}}^2}} \right){\rm{.}}\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Đáp án: \(2\)
\(\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right) = - 2{x^2} + 8\)
\(\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right) + 2\left( {{x^2} - 4} \right) = 0\)
\(\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right) + 2\left( {x - 2} \right)\left( {x + 2} \right) = 0\)
\(\left( {x + 2} \right)\left[ {{x^2} - 2x + 4 + 2\left( {x - 2} \right)} \right] = 0\)
\(\left( {x + 2} \right){x^2} = 0\)
\(x + 2 = 0\) hoặc \({x^2} = 0\)
\(x = - 2\) hoặc \(x = 0\)
Vậy có hai giá trị của \(x\) thỏa mãn yêu cầu bài toán.
Câu 2
A. \( - 4.\)
Lời giải
Lời giải
Đáp án đúng là: B
\({x^2} + 6x = 0\)
\(x\left( {x + 6} \right) = 0\)
\(x = 0\) hoặc \(x + 6 = 0\)
\(x = 0\) hoặc \(x = - 6\)
Vậy tổng các giá trị của \(x\) thỏa mãn bài toán là: \(0 + \left( { - 6} \right) = - 6.\)
Câu 3
A. \(4y\left( {x - y} \right).\)
D. \(2y\left( {x - y} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(x\left( {x - 1} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\frac{x}{4} + 2y\) và \(\frac{x}{4} - 2y.\)
B. \(\frac{x}{4} + 2y\) và \(\frac{{{x^2}}}{{16}} - \frac{{xy}}{2} + 4{y^2}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(x\left( {3x - 1} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
