Đẳng thức nào sau đây là sai?
Đẳng thức nào sau đây là sai?
A. \({\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = 4ab.\)
B. \({\left( {a + b} \right)^2} + {\left( {a - b} \right)^2} = 2\left( {{a^2} + {b^2}} \right)\).
Quảng cáo
Trả lời:
Lời giải
Đáp án đúng là: C
Xét các đáp án, ta có:
• \({\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = {a^2} + 2ab + {b^2} - {a^2} + 2ab - {b^2} = 4ab.\) Do đó, đẳng thức đúng.
• \({\left( {a + b} \right)^2} + {\left( {a - b} \right)^2} = {a^2} + 2ab + {b^2} + {a^2} - 2ab + {b^2} = 2\left( {{a^2} + {b^2}} \right).\) Do đó, đẳng thức đúng.
• \[{\left( { - a - b} \right)^2} = {\left[ { - \left( {a + b} \right)} \right]^2} = {\left( {a + b} \right)^2}.\] Do đó, đẳng thức sai.
• \(\left( { - a - b} \right)\left( { - a + b} \right) = {\left( { - a} \right)^2} - {b^2} = {a^2} - {b^2}.\) Do đó, đẳng thức đúng.
Vậy chọn đáp án C.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Đúng
Chiều rộng của thửa ruộng hình chữ nhật này là \(\frac{1}{2}.20 = 10\) (m).
Diện tích của thửa ruộng hình chữ nhật đó là: \(10 \cdot 20 = 200\) (m2).
b) Đúng
Chiều dài của thửa ruộng sau khi giảm \(x{\rm{ }}\left( {\rm{m}} \right)\) là \(20 - x{\rm{ }}\left( {\rm{m}} \right)\).
Chiều rộng của thửa ruộng sau khi tăng \(x{\rm{ }}\left( {\rm{m}} \right)\) là \(10 + x{\rm{ }}\left( {\rm{m}} \right)\).
Do đó, diện tích của thửa ruộng sau khi thay đổi chiều dài, chiều rộng là \(\left( {20 - x} \right)\left( {10 + x} \right){\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
c) Đúng
Nhận thấy, \(S = \left( {20 - x} \right)\left( {10 + x} \right) = - {x^2} + 10x + 200 = - {\left( {x - 5} \right)^2} + 225\).
Nhận thấy \( - {\left( {x - 5} \right)^2} + 225 \le 225\) với mọi \(x\) hay giá trị lớn nhất của \(S = 225{\rm{ }}\left( {{{\rm{m}}^2}} \right)\)
d) Sai
Từ trên, nhận thấy diện tích thửa ruộng đạt giá trị lớn nhất bằng \(225{\rm{ }}\left( {{{\rm{m}}^2}} \right)\) khi \( - {\left( {x - 5} \right)^2} = 0\).
Suy ra \(x = 5.\)
Lời giải
Lời giải
a) Đúng
Vì độ dài đoạn dây lớn và nhỏ được cắt ra lần lượt là \(4x\) và \(4y\) \(\left( {x,y \in {\mathbb{N}^*},{\rm{ cm}}} \right)\) thì cạnh mỗi hình vuông lớn và nhỏ có độ dài lần lượt là \(x\) và \(y\) (cm).
Vì \(4x + 4y = 200\) nên \(x + y = 50\) (cm).
Do đó, tổng độ dài hai cạnh hình vuông lớn và nhỏ là 50 cm.
b) Đúng
Diện tích phần nằm giữa hai hình vuông là: \(S = {x^2} - {y^2} = \left( {x + y} \right)\left( {x - y} \right) = 50\left( {x - y} \right){\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)
c) Đúng
Để diện tích phần nằm giữa hai hình vuông lớn nhất thì \(\left( {x - y} \right)\) phải đạt giá trị lớn nhất.
Mà \(x + y = 50\), khi đó \(x = 49{\rm{ cm}},y = 1{\rm{ cm}}{\rm{.}}\)
d) Đúng
Với \(x = 49{\rm{ cm}}\) thì độ dài của đoạn dây thứ nhất là \(49 \cdot 4 = 196{\rm{ }}\left( {{\rm{cm}}} \right)\).
Với \(y = 1{\rm{ cm}}\) thì độ dài của đoạn dây thứ hai là \(1 \cdot 4 = 4{\rm{ }}\left( {{\rm{cm}}} \right)\).
Để diện tích phần nằm giữa hai hình vuông lớn nhất thì cắt sợi dây có độ dài thành hai đoạn 196 cm và 4 cm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \({\left( {3y + \frac{1}{3}} \right)^3}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(4{x^2} - 9.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

