Câu hỏi:

26/08/2025 41 Lưu

Biểu đồ dưới đây mô tả kết quả điều tra về mức lương khởi điểm (đơn vị: triệu đồng) của một số công nhân ở hai khu vực A và B.

a) Khoảng biến thiên của mẫu số liệu ghép nhóm là 4.  b) Xét mẫu số liệu của khu vực A ta có phương sai của mẫu số liệu ghép nhóm là 2,05. (ảnh 1)

Người ta lập được bảng tần số ghép nhóm cho mẫu số liệu như sau

a) Khoảng biến thiên của mẫu số liệu ghép nhóm là 4.  b) Xét mẫu số liệu của khu vực A ta có phương sai của mẫu số liệu ghép nhóm là 2,05. (ảnh 2)

a) Khoảng biến thiên của mẫu số liệu ghép nhóm là 4.

b) Xét mẫu số liệu của khu vực A ta có phương sai của mẫu số liệu ghép nhóm là 2,05.

c) Xét mẫu số liệu của khu vực B ta có phương sai của mẫu số liệu ghép nhóm là 1,5875.

d) Nếu so sánh theo độ lệch chuẩn của mẫu số liệu ghép nhóm thì mức lương khởi điểm của công nhân khu vực B đồng đều hơn công nhân khu vực A.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Khoảng biến thiên của mẫu số liệu là: 10 – 5 = 5.

b) Ta có \(\overline {{x_A}} = \frac{{5,5.4 + 6,5.5 + 7,5.5 + 8,5.4 + 9,5.2}}{{4 + 5 + 5 + 4 + 2}} = \frac{{29}}{4}\).

\(s_A^{^2} = \frac{{{{5,5}^2}.4 + {{6,5}^2}.5 + {{7,5}^2}.5 + {{8,5}^2}.4 + {{9,5}^2}.2}}{{4 + 5 + 5 + 4 + 2}} - {\left( {\frac{{29}}{4}} \right)^2} = \frac{{127}}{{80}}\).

c) \(\overline {{x_B}} = \frac{{5,5.3 + 6,5.6 + 7,5.5 + 8,5.5 + 9,5.1}}{{3 + 6 + 5 + 5 + 1}} = \frac{{29}}{4}\).

\(s_B^2 = \frac{{{{5,5}^2}.3 + {{6,5}^2}.6 + {{7,5}^2}.5 + {{8,5}^2}.5 + {{9,5}^2}.1}}{{3 + 6 + 5 + 5 + 1}} - {\left( {\frac{{29}}{4}} \right)^2} = \frac{{103}}{{80}} = 1,2875\).

d) Có \({s_A} = \sqrt {\frac{{127}}{{80}}} \approx 1,26\); \({s_B} = \sqrt {\frac{{103}}{{80}}} \approx 1,13\).

Vì sB < sA nên mức lương khởi điểm của công nhân khu vực B đồng đều hơn công nhân khu vực A.

Đáp án: a) Sai;   b) Sai; c) Sai;   d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Nhóm

Giá trị đại diện

Tần số

\[\left[ {36;38} \right)\]

\[37\]

\[9\]

\[\left[ {38;40} \right)\]

\[39\]

\[15\]

\[\left[ {40;42} \right)\]

\[41\]

\[25\]

\[\left[ {42;44} \right)\]

\[43\]

\[30\]

\[\left[ {44;46} \right)\]

\[45\]

\[21\]

 

 

\[n = 100\]

Số trung bình cộng của mẫu số liệu ghép nhóm là:

\[\overline x \, = \frac{{37.9 + 39.15 + 41.25 + 43.30 + 45.21}}{{100}} = 41,78\]

Độ lệch chuẩn của mẫu số liệu ghép nhóm là:

 \[\begin{array}{l}s\, = \sqrt {\frac{1}{{100}}\left[ {9.{{\left( {37 - 41,78} \right)}^2} + 15.{{\left( {39 - 41,78} \right)}^2} + 25.{{\left( {41 - 41,78} \right)}^2} + 30.{{\left( {43 - 41,78} \right)}^2} + 21.{{\left( {45 - 41,78} \right)}^2}} \right]} \\ = 2,45\end{array}\]

Trả lời: 2,45.

Lời giải

a) Xét số liệu ở Đà Lạt : Khoảng biến thiên là: \(R = 91,5 - 78,3 = 13,2\)

b) Xét số liệu ở Vũng Tàu:

+ Số phần tử của mẫu là \(n = 12\).

Tứ phân vị thứ nhất \({Q_1} = \frac{{{x_3} + {x_4}}}{2}\) mà x3; x4 Î [75; 78,3).

Tứ phân vị thứ nhất là: \({Q_1} = 75 + \left( {\frac{{3 - 0}}{5}} \right).3,3 = 76,98\).

\({Q_3} = \frac{{{x_9} + {x_{10}}}}{2}\) mà x9; x10 Î [78,3; 81,6).

Ta có tứ phân vị thứ ba là: \({Q_3} = 78,3 + \left( {\frac{{9 - 5}}{6}} \right).3,3 = 80,5\).

Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \({Q_3} - {Q_1} = 80,5 - 76,98 = 3,52\).

c) Xét số liệu ở Đà Lạt :

+ Số trung bình cộng của mẫu số liệu ghép nhóm là:

\(\overline {{x_1}}  = \frac{{0.76,65 + 2.79,95 + 83,25 + 6.86,55 + 3.89,85}}{{12}} = 86\)

Phương sai của mẫu số liệu ghép nhóm là:

\(s_1^2 = \frac{{{{0.76,65}^2} + {{2.79,95}^2} + {{83,25}^2} + {{6.86,55}^2} + {{3.89,85}^2}}}{{12}} - {86^2} = \frac{{847}}{{80}}\).

Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \({s_1} = \sqrt {{s_1}^2}  = \sqrt {\frac{{847}}{{80}}}  \approx 3,25\).

d) Xét số liệu ở Vũng Tàu:

+ Số trung bình cộng của mẫu số liệu ghép nhóm là: \(\overline {{x_2}}  = \frac{{5.76,65 + 6.79,95 + 83,25}}{{12}} = 78,85\)

Phương sai của mẫu số liệu ghép nhóm là:

\(s_2^2 = \frac{{5{{(76,65 - 78,85)}^2} + 6{{(79,95 - 78,85)}^2} + {{(83,25 - 78,85)}^2}}}{{12}} = 4,235\)

Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \({s_2} = \sqrt {s_2^2}  = \sqrt {4,235}  \approx 2,06\)

Vũng Tàu có nhiệt độ không khí trung bình tháng đồng đều hơn vì độ lệch chuẩn nhỏ hơn.

Đáp án: a) Sai;   b) Sai;   c) Sai;   d) Sai.