C. TRẢ LỜI NGẮN. Thí sinh trả lời câu 1 đến câu 4.
Trong một thí nghiệm y học, người ta cấy \(900\) con vi khuẩn vào môi trường dinh dưỡng. Bằng thực nghiệm, người ta xác định được số lượng vi khuẩn thay đổi theo giời gian bởi công thức: \(N\left( t \right) = 900 + \frac{{100t}}{{100 + {t^2}}}\) (con), trong đó \(t\) là thời gian tính bằng giây \(\left( {t \ge 0} \right)\). Trong khoảng thời gian \(\left( {a;b} \right)\) từ lúc nuôi cấy thì số lượng vi khuẩn sẽ tăng lên. Tính \(3a + \,2b\).
C. TRẢ LỜI NGẮN. Thí sinh trả lời câu 1 đến câu 4.
Trong một thí nghiệm y học, người ta cấy \(900\) con vi khuẩn vào môi trường dinh dưỡng. Bằng thực nghiệm, người ta xác định được số lượng vi khuẩn thay đổi theo giời gian bởi công thức: \(N\left( t \right) = 900 + \frac{{100t}}{{100 + {t^2}}}\) (con), trong đó \(t\) là thời gian tính bằng giây \(\left( {t \ge 0} \right)\). Trong khoảng thời gian \(\left( {a;b} \right)\) từ lúc nuôi cấy thì số lượng vi khuẩn sẽ tăng lên. Tính \(3a + \,2b\).
Quảng cáo
Trả lời:

Ta có \(N'\left( t \right) = \frac{{100\left( {100 + {t^2}} \right) - 100t \cdot 2t}}{{{{\left( {100 + {t^2}} \right)}^2}}} = \frac{{100\left( {100 - {t^2}} \right)}}{{{{\left( {100 + {t^2}} \right)}^2}}}\).
\(N'\left( t \right) = 0\) khi \(t = 10\).
Bảng biến thiên:
Từ bảng biến thiên, ta thấy trong khoảng thời gian \(\left( {0;\,10} \right)\) từ lúc nuôi cấy thì số lượng vi khuẩn sẽ tăng lên.
Khi đó, ta có: \(a = 0,\,\,b = 10\). Vậy \(3a\, + \,2b = 20\).
Đáp án: 20.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(\overrightarrow P = m\overrightarrow g \) nên \(P = \left| {\overrightarrow P } \right| = m \cdot \left| {\overrightarrow g } \right| = 10\) (N).
Bóng đèn ở vị trí cân bằng nên \(\overrightarrow P + \overrightarrow {{T_1}} + \overrightarrow {{T_2}} = \overrightarrow 0 \) hay \(\overrightarrow P = - \overrightarrow {T'} \) với \(\overrightarrow {T'} = \overrightarrow {{T_1}} + \overrightarrow {{T_2}} \).
Suy ra \(T' = P = 10\,{\rm{N}}\). Vì \({T_1} = {T_2}\) và \(\left( {\overrightarrow {{T_1}} ,\,\overrightarrow {{T_2}} } \right) = 60^\circ \) nên
\(\frac{{T'}}{2} = {T_1} \cdot \cos 30^\circ \Rightarrow {T_1} = \frac{{10}}{{\sqrt 3 }} = \frac{{10\sqrt 3 }}{3}\) (N).
Vậy lực căng của mỗi nửa sợi dây là \(\frac{{10\sqrt 3 }}{3}\,{\rm{N}}\).
Lời giải
Từ phương trình \(\frac{1}{3}f\left( x \right) + 1 = 0 \Leftrightarrow f\left( x \right) = - 3\).
Dựa vào BBT, đường thẳng \(y = - 3\) cắt đồ thị hàm số tại 2 điểm, nên phương trình có 2 nghiệm phân biệt.
Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\overrightarrow {CD} \).
B. \(\overrightarrow {AB} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(\left( {1;2} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.