Câu hỏi:

11/09/2025 58 Lưu

Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị \(\left( C \right)\). Biết \(y = f'\left( x \right)\) có đồ thị như hình vẽ và tâm đối xứng của đồ thị \(\left( C \right)\) thuộc trục hoành. Tính khoảng cách giữa hai điểm cực trị của đồ thị \(\left( C \right)\). (Quy tròn kết quả đến hàng phần trăm).

Ảnh có chứa hàng, biểu đồ, Sơ đồ

Mô tả được tạo tự động

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Parabol \(y' = f'\left( x \right) = 3a{x^2} + 2bx + c\) có đỉnh \(\left( {2;\,\, - 1} \right)\) và đi qua \(O\left( {0;\,\,0} \right)\) nên ta có hệ phương trình

\[\left\{ {\begin{array}{*{20}{c}}{ - \frac{{2b}}{{6a}} = 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\\begin{array}{l}12a + 4b + c = - 1\\c = 0\end{array}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}\begin{array}{l}a = \frac{1}{{12}}\\b = - \frac{1}{2}\end{array}\\{c = 0\,\,\,\,\,}\end{array}} \right.\].

Tâm đối xứng của \(\left( C \right)\) thuộc trục hoành nên suy ra tâm đối xứng có toạ độ \(\left( {2;\,\,0} \right)\).

Do đó \(\frac{{{2^3}}}{{12}} - \frac{{{2^2}}}{2} + d = 0 \Leftrightarrow d = \frac{4}{3}\).

Khi đó, đồ thị hàm số \(y = f\left( x \right) = \frac{{{x^3}}}{{12}} - \frac{{{x^2}}}{2} + \frac{4}{3}\) có hai điểm cực trị là \(A\left( {0;\,\,\frac{4}{3}} \right)\)\(B\left( {4;\,\, - \frac{4}{3}} \right)\).

Vậy \(AB = \sqrt {{4^2} + {{\left( { - \frac{8}{3}} \right)}^2}} = \frac{{4\sqrt {13} }}{3} \approx 4,81\).

Đáp án: 4,81.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\overrightarrow P = m\overrightarrow g \) nên \(P = \left| {\overrightarrow P } \right| = m \cdot \left| {\overrightarrow g } \right| = 10\) (N).

Bóng đèn ở vị trí cân bằng nên \(\overrightarrow P + \overrightarrow {{T_1}} + \overrightarrow {{T_2}} = \overrightarrow 0 \) hay \(\overrightarrow P = - \overrightarrow {T'} \) với \(\overrightarrow {T'} = \overrightarrow {{T_1}} + \overrightarrow {{T_2}} \).

Suy ra \(T' = P = 10\,{\rm{N}}\). Vì \({T_1} = {T_2}\)\(\left( {\overrightarrow {{T_1}} ,\,\overrightarrow {{T_2}} } \right) = 60^\circ \) nên

\(\frac{{T'}}{2} = {T_1} \cdot \cos 30^\circ \Rightarrow {T_1} = \frac{{10}}{{\sqrt 3 }} = \frac{{10\sqrt 3 }}{3}\) (N).

Vậy lực căng của mỗi nửa sợi dây là \(\frac{{10\sqrt 3 }}{3}\,{\rm{N}}\).

Lời giải

Từ phương trình \(\frac{1}{3}f\left( x \right) + 1 = 0 \Leftrightarrow f\left( x \right) = - 3\).

Dựa vào BBT, đường thẳng \(y = - 3\) cắt đồ thị hàm số tại 2 điểm, nên phương trình có 2 nghiệm phân biệt.

Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\overrightarrow {CD} \).                                       

B. \(\overrightarrow {AB} \).   

C. \(\overrightarrow {CI} \).     
D. \(\overrightarrow {BI} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left( {1;2} \right)\).       

B. \(\left( { - 2; - 1} \right)\).     
C. \(\left( { - 1;0} \right)\).                                          
D. \(\left( {0;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP