C. TRẢ LỜI NGẮN. Thí sinh trả lời câu 1 đến câu 4.
Số lượng sản phẩm bán được của một công ty trong \(x\) (tháng) được tính theo công thức \(S\left( x \right) = 500\left( {3 - \frac{7}{{3 + x}}} \right)\), trong đó \(x \ge 1\). Số lượng sản phẩm được bán của công ty đó trong \(x\) (tháng) khi \(x\) đủ lớn gần bằng bao nhiêu?
C. TRẢ LỜI NGẮN. Thí sinh trả lời câu 1 đến câu 4.
Số lượng sản phẩm bán được của một công ty trong \(x\) (tháng) được tính theo công thức \(S\left( x \right) = 500\left( {3 - \frac{7}{{3 + x}}} \right)\), trong đó \(x \ge 1\). Số lượng sản phẩm được bán của công ty đó trong \(x\) (tháng) khi \(x\) đủ lớn gần bằng bao nhiêu?
Quảng cáo
Trả lời:

Ta có \(\mathop {\lim }\limits_{x \to + \infty } S\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } 500\left( {3 - \frac{7}{{3 + x}}} \right) = 1500\).
Vậy đồ thị hàm số \(y = S\left( x \right)\) nhận đường thẳng \(y = 1500\) làm tiệm cận ngang, tức là khi \(x\) càng lớn lượng sản phẩm bán ra sẽ tiến gần đến mức \(1500\) (sản phẩm/tháng).
Đáp án: 1500.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Theo hình vẽ ta có các vectơ \[\overrightarrow {AS} ,\,\overrightarrow {BS} ,\,\overrightarrow {CS} ,\,\overrightarrow {DS} \] biểu thị các lực căng \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} ,\,\overrightarrow {{F_4}} \).
Khi đó, \(\overrightarrow {{F_1}} + \,\overrightarrow {{F_2}} + \,\overrightarrow {{F_3}} + \,\overrightarrow {{F_4}} = \overrightarrow {AS} + \,\overrightarrow {BS} + \,\overrightarrow {CS} + \,\overrightarrow {DS} \)
\( = - \left( {\overrightarrow {SA} + \,\overrightarrow {SB} + \,\overrightarrow {SC} + \,\overrightarrow {SD} } \right) = - \left[ {\left( {\overrightarrow {SA} + \,\overrightarrow {SC} } \right) + \,\left( {\overrightarrow {SB} + \,\overrightarrow {SD} } \right)} \right]\)
\( = - \left( {2\overrightarrow {SO} + 2\overrightarrow {SO} } \right) = - 4\overrightarrow {SO} \).
Vì các đoạn dây cáp có độ dài bằng nhau và góc tạo bởi hai đoạn dây cáp đối diện nhau là 60° nên tam giác \[SAC\] cân và \[\widehat {ASC} = 60^\circ \], do đó tam giác \[SAC\] đều, suy ra \[SO = SA \cdot \frac{{\sqrt 3 }}{2}\].
Khi đó, \(\left| {\overrightarrow {{F_1}} + \,\overrightarrow {{F_2}} + \,\overrightarrow {{F_3}} + \,\overrightarrow {{F_4}} } \right| = 4SO = 4 \cdot SA \cdot \frac{{\sqrt 3 }}{2} = 4 \cdot 5\,000 \cdot \frac{{\sqrt 3 }}{2} = 10\,000\sqrt 3 \,\,{\rm{(N)}}{\rm{.}}\)
Ta có \[\overrightarrow P = m \cdot \overrightarrow g \], suy ra \[P = m \cdot g = 10m\].
Để cần cẩu nâng được thùng hàng thì \(\left| {\overrightarrow {{F_1}} + \,\overrightarrow {{F_2}} + \,\overrightarrow {{F_3}} + \,\overrightarrow {{F_4}} } \right| \ge P\).
Suy ra \(10\,000\sqrt 3 \ge 10m \Rightarrow m \le 1\,000\sqrt 3 \,\,{\rm{(kg)}}\).
Vậy \(m \le 1\,000\sqrt 3 \,\,{\rm{(kg)}}\).
Câu 2
Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. Hàm số \(y = f\left( x \right)\) có giá trị nhỏ nhất bằng \( - 2\).
B. Hàm số \(y = f\left( x \right)\) không có giá trị lớn nhất.
C. Hàm số \(y = f\left( x \right)\) có giá trị lớn nhất bằng \[ - 1\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.