Câu hỏi:

11/09/2025 1,101 Lưu

Một thùng rác thông minh cảm ứng tự động đóng mở dạng hình hộp chữ nhật có đáy là hình vuông và có thể tích là 2000 cm3. Thùng rác được làm bằng nhựa ABS có độ bền cao, chịu nhiệt, cách điện, chống nước. Để lượng vật liệu dùng để sản xuất thùng rác là nhỏ nhất thì chiều cao của chiếc hộp bằng bao nhiêu?

Description: C:\Users\Dinh Len\Desktop\ẢNH RÁC 3.jpg

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(x\,\left( {{\rm{cm}}} \right)\) là cạnh đáy của chiếc thùng \(\,\left( {x > 0} \right)\).

Khi đó diện tích đáy thùng là \(x{\,^2}\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).

Vì thể tích thùng là \(2000\,{\rm{c}}{{\rm{m}}^{\rm{3}}}\) nên chiều cao hộp là \(h = \frac{{2000}}{{{x^2}}}\,\,\left( {{\rm{cm}}} \right)\).

Tổng diện tích các bề mặt của chiếc thùng là: \(S = 2{x^2} + 4xh = \,\,2{x^2} + \frac{{8000}}{x}\,\,\,\left( {x > 0} \right)\).

Ta có \(S' = 4x - \frac{{8000}}{{{x^2}}}\,\, = \frac{{4{x^3} - 8000}}{{{x^2}}};\,\,\,S'\, = 0 \Leftrightarrow x = 10\sqrt[3]{2}\).

Bằng cách bảng biến thiên, dễ thấy diện tích bề mặt thùng nhỏ nhất khi cạnh đáy của thùng là \(10\sqrt[3]{2}\) và chiều cao của thùng là \(\frac{{20}}{{\sqrt[3]{4}}}\).

Vậy nguyên liệu để sản xuất chiếc thùng là ít nhất khi chiều cao thùng là \(\frac{{20}}{{\sqrt[3]{4}}}\,\,{\rm{cm}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Ta có \(\overrightarrow {AB} = \overrightarrow {A'B'} = \overrightarrow {D'C'} = \overrightarrow {DC} \).

b) Sai. \(\overrightarrow {A'B'} = \overrightarrow {AB} \) (do \(ABB'A'\) là hình bình hành), \[\overrightarrow {B'M} = \frac{1}{2}\overrightarrow {B'C'} = \frac{1}{2}\overrightarrow {AD} \] (do \(M\) là trung điểm của \(B'C'\), và \(ADC'B'\) là hình bình hành).

Nên ta có: \(\overrightarrow {AM} = \overrightarrow {AA'} + \overrightarrow {A'B'} + \overrightarrow {B'M} = \overrightarrow {AA'} + \overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} \).

c) Đúng. Ta có: \(3\overrightarrow {AG} = \overrightarrow {AD} + \overrightarrow {AD'} + \overrightarrow {AC'} \) (vì \(G\) là trọng tâm tam giác \(DC'D'\)).

\(\overrightarrow {AD'} = \overrightarrow {AA'} + \overrightarrow {AD} \) (vì \(ADD'A'\) là hình bình hành), \(\overrightarrow {AC'} = \overrightarrow {AA'} + \overrightarrow {AB} + \overrightarrow {AD} \) (do \(ABCD.A'B'C'D'\) là hình hộp).

Nên \(3\overrightarrow {AG} = \overrightarrow {AB} + 2\overrightarrow {AA'} + 3\overrightarrow {AD} \Rightarrow \overrightarrow {AG} = \frac{1}{3}\overrightarrow {AB} + \frac{2}{3}\overrightarrow {AA'} + \overrightarrow {AD} \).

Bình phương 2 vế và lưu ý \(\overrightarrow {AB} \cdot \overrightarrow {AA'} = \overrightarrow {AB} \cdot \overrightarrow {AD} = \overrightarrow {AD} \cdot \overrightarrow {AA'} = 0\) (các vectơ đôi một vuông góc) ta có:

\(A{G^2} = \frac{1}{9}A{B^2} + \frac{4}{9}A{A'^2} + A{D^2} = \frac{1}{9}{a^2} + \frac{4}{9}{c^2} + {b^2}\)\( \Rightarrow AG = \sqrt {\frac{1}{9}{a^2} + \frac{4}{9}{c^2} + {b^2}} \).

d) Sai. \(\overrightarrow {AB} \cdot \overrightarrow {AA'} = \overrightarrow {AB} \cdot \overrightarrow {AD} = \overrightarrow {AD} \cdot \overrightarrow {AA'} = 0\) (các vectơ đôi một vuông góc).

Nên ta có: \(\overrightarrow {AM} \cdot \overrightarrow {AG} = \left( {\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} + \overrightarrow {AA'} } \right) \cdot \left( {\frac{1}{3}\overrightarrow {AB} + \overrightarrow {AD} + \frac{2}{3}\overrightarrow {AA'} } \right)\)

                                 \( = \frac{1}{3}A{B^2} + \frac{1}{2}A{D^2} + \frac{2}{3}A{A'^2}\)\( = \frac{1}{3}{a^2} + \frac{1}{2}{b^2} + \frac{2}{3}{c^2}\).

Lời giải

Ta có \(\mathop {\lim }\limits_{x \to + \infty } S\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } 500\left( {3 - \frac{7}{{3 + x}}} \right) = 1500\).

Vậy đồ thị hàm số \(y = S\left( x \right)\) nhận đường thẳng \(y = 1500\) làm tiệm cận ngang, tức là khi \(x\) càng lớn lượng sản phẩm bán ra sẽ tiến gần đến mức \(1500\) (sản phẩm/tháng).

Đáp án: 1500.

Câu 4

A. \(\left( {3;1} \right)\).        
B. \(\left( { - 1; - 1} \right)\). 
C. \(\left( {1;3} \right)\). 
D. \(\left( {1;\, - 1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP