Câu hỏi:

11/09/2025 436 Lưu

Người ta vận chuyển một thùng hàng có dạng hình hộp chữ nhật bằng cách móc 4 dây cáp vào 4 góc trên của thùng hàng và đầu còn lại móc vào cần cẩu như hình vẽ. Biết rằng các đoạn dây cáp có độ dài bằng nhau và góc tạo bởi hai đoạn dây cáp đối diện nhau là 60°. Chiếc cần cẩu kéo thùng hàng lên theo phương thẳng đứng. Biết rằng \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} ,\,\overrightarrow {{F_4}} \) chịu được tối đa lực căng là 5 000 N. Hỏi cần cẩu nâng được thùng hàng có khối lượng (đơn vị: kg) tối đa là bao nhiêu? Lấy g = 10 m/s2.

A crane lifting a box

AI-generated content may be incorrect.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Theo hình vẽ ta có các vectơ \[\overrightarrow {AS} ,\,\overrightarrow {BS} ,\,\overrightarrow {CS} ,\,\overrightarrow {DS} \] biểu thị các lực căng \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} ,\,\overrightarrow {{F_4}} \).

Khi đó, \(\overrightarrow {{F_1}} + \,\overrightarrow {{F_2}} + \,\overrightarrow {{F_3}} + \,\overrightarrow {{F_4}} = \overrightarrow {AS} + \,\overrightarrow {BS} + \,\overrightarrow {CS} + \,\overrightarrow {DS} \)

\( = - \left( {\overrightarrow {SA} + \,\overrightarrow {SB} + \,\overrightarrow {SC} + \,\overrightarrow {SD} } \right) = - \left[ {\left( {\overrightarrow {SA} + \,\overrightarrow {SC} } \right) + \,\left( {\overrightarrow {SB} + \,\overrightarrow {SD} } \right)} \right]\)

\( = - \left( {2\overrightarrow {SO} + 2\overrightarrow {SO} } \right) = - 4\overrightarrow {SO} \).

Vì các đoạn dây cáp có độ dài bằng nhau và góc tạo bởi hai đoạn dây cáp đối diện nhau là 60° nên tam giác \[SAC\] cân và \[\widehat {ASC} = 60^\circ \], do đó tam giác \[SAC\] đều, suy ra \[SO = SA \cdot \frac{{\sqrt 3 }}{2}\].

Khi đó, \(\left| {\overrightarrow {{F_1}} + \,\overrightarrow {{F_2}} + \,\overrightarrow {{F_3}} + \,\overrightarrow {{F_4}} } \right| = 4SO = 4 \cdot SA \cdot \frac{{\sqrt 3 }}{2} = 4 \cdot 5\,000 \cdot \frac{{\sqrt 3 }}{2} = 10\,000\sqrt 3 \,\,{\rm{(N)}}{\rm{.}}\)

Ta có \[\overrightarrow P = m \cdot \overrightarrow g \], suy ra \[P = m \cdot g = 10m\].

Để cần cẩu nâng được thùng hàng thì \(\left| {\overrightarrow {{F_1}} + \,\overrightarrow {{F_2}} + \,\overrightarrow {{F_3}} + \,\overrightarrow {{F_4}} } \right| \ge P\).

Suy ra \(10\,000\sqrt 3 \ge 10m \Rightarrow m \le 1\,000\sqrt 3 \,\,{\rm{(kg)}}\).

Vậy \(m \le 1\,000\sqrt 3 \,\,{\rm{(kg)}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Ta có \(\overrightarrow {AB} = \overrightarrow {A'B'} = \overrightarrow {D'C'} = \overrightarrow {DC} \).

b) Sai. \(\overrightarrow {A'B'} = \overrightarrow {AB} \) (do \(ABB'A'\) là hình bình hành), \[\overrightarrow {B'M} = \frac{1}{2}\overrightarrow {B'C'} = \frac{1}{2}\overrightarrow {AD} \] (do \(M\) là trung điểm của \(B'C'\), và \(ADC'B'\) là hình bình hành).

Nên ta có: \(\overrightarrow {AM} = \overrightarrow {AA'} + \overrightarrow {A'B'} + \overrightarrow {B'M} = \overrightarrow {AA'} + \overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} \).

c) Đúng. Ta có: \(3\overrightarrow {AG} = \overrightarrow {AD} + \overrightarrow {AD'} + \overrightarrow {AC'} \) (vì \(G\) là trọng tâm tam giác \(DC'D'\)).

\(\overrightarrow {AD'} = \overrightarrow {AA'} + \overrightarrow {AD} \) (vì \(ADD'A'\) là hình bình hành), \(\overrightarrow {AC'} = \overrightarrow {AA'} + \overrightarrow {AB} + \overrightarrow {AD} \) (do \(ABCD.A'B'C'D'\) là hình hộp).

Nên \(3\overrightarrow {AG} = \overrightarrow {AB} + 2\overrightarrow {AA'} + 3\overrightarrow {AD} \Rightarrow \overrightarrow {AG} = \frac{1}{3}\overrightarrow {AB} + \frac{2}{3}\overrightarrow {AA'} + \overrightarrow {AD} \).

Bình phương 2 vế và lưu ý \(\overrightarrow {AB} \cdot \overrightarrow {AA'} = \overrightarrow {AB} \cdot \overrightarrow {AD} = \overrightarrow {AD} \cdot \overrightarrow {AA'} = 0\) (các vectơ đôi một vuông góc) ta có:

\(A{G^2} = \frac{1}{9}A{B^2} + \frac{4}{9}A{A'^2} + A{D^2} = \frac{1}{9}{a^2} + \frac{4}{9}{c^2} + {b^2}\)\( \Rightarrow AG = \sqrt {\frac{1}{9}{a^2} + \frac{4}{9}{c^2} + {b^2}} \).

d) Sai. \(\overrightarrow {AB} \cdot \overrightarrow {AA'} = \overrightarrow {AB} \cdot \overrightarrow {AD} = \overrightarrow {AD} \cdot \overrightarrow {AA'} = 0\) (các vectơ đôi một vuông góc).

Nên ta có: \(\overrightarrow {AM} \cdot \overrightarrow {AG} = \left( {\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} + \overrightarrow {AA'} } \right) \cdot \left( {\frac{1}{3}\overrightarrow {AB} + \overrightarrow {AD} + \frac{2}{3}\overrightarrow {AA'} } \right)\)

                                 \( = \frac{1}{3}A{B^2} + \frac{1}{2}A{D^2} + \frac{2}{3}A{A'^2}\)\( = \frac{1}{3}{a^2} + \frac{1}{2}{b^2} + \frac{2}{3}{c^2}\).

Lời giải

Ta có \(\mathop {\lim }\limits_{x \to + \infty } S\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } 500\left( {3 - \frac{7}{{3 + x}}} \right) = 1500\).

Vậy đồ thị hàm số \(y = S\left( x \right)\) nhận đường thẳng \(y = 1500\) làm tiệm cận ngang, tức là khi \(x\) càng lớn lượng sản phẩm bán ra sẽ tiến gần đến mức \(1500\) (sản phẩm/tháng).

Đáp án: 1500.

Câu 4

A. \(\left( {3;1} \right)\).        
B. \(\left( { - 1; - 1} \right)\). 
C. \(\left( {1;3} \right)\). 
D. \(\left( {1;\, - 1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP