Câu hỏi:

31/08/2025 12 Lưu

Nếu một vật có khối lượng m(kg) thì lực hấp dẫn \(\overrightarrow P \) của Trái Đất tác dụng lên vật được xác định theo công thức \(\overrightarrow P = m\overrightarrow g \), trong đó \(\overrightarrow g \) là gia tốc rơi tự do có độ lớn g = 9,8 m/s2. Tính độ lớn của lực hấp dẫn của Trái Đất tác dụng lên một quả táo có khối lượng 105 gam (làm tròn kết quả đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đổi 105 g = 0,105 kg.

Độ lớn của lực hấp dẫn của Trái Đất tác dụng lên một quả táo là:

\(\left| {\overrightarrow P } \right| = m\left| {\overrightarrow g } \right| = 0,105.9,8 = 1,029N \approx 1,03N\).

Trả lời: 1,03.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi I là tâm hình vuông ABCD. gọi G là trọng tâm của tam giác AB'C.
(a) \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} (ảnh 1)

a) Theo quy tắc hình hộp ta có \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} = \overrightarrow {AC'} \).

b) Vì G là trọng tâm AB'C nên \(\overrightarrow {GA} + \overrightarrow {GB'} + \overrightarrow {GC} = \overrightarrow 0 \).

c) Theo quy tắc hình bình hành \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \) mà \(\overrightarrow {AC} = \overrightarrow {A'C'} \) nên \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {A'C'} \).

d) Xét BDB' có I là trung điểm của BD và \(B'G = \frac{2}{3}B'I\) nên G là trọng tâm BDB'.

Gọi J là tâm của hình bình hành BDD'B'.

Khi đó \(\overrightarrow {BG} = \frac{2}{3}\overrightarrow {BJ} = \frac{2}{3}.\frac{1}{2}\overrightarrow {BD'} \)\( \Rightarrow \overrightarrow {BD'} = 3\overrightarrow {BG} \).

Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.

Lời giải

Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB, CD và G là trung điểm MN.
(a) \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overri (ảnh 1)

a) Có \(\overrightarrow {GA} + \overrightarrow {GB} = 2\overrightarrow {GM} ;\overrightarrow {GC} + \overrightarrow {GD} = 2\overrightarrow {GN} \).

Do đó \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = 2\left( {\overrightarrow {GM} + \overrightarrow {GN} } \right) = \overrightarrow 0 \).

b) \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MD} \)\( = 4\overrightarrow {MG} + \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} \)\( = 4\overrightarrow {MG} \).

c) d) Ta có \(\overrightarrow {MN} = \overrightarrow {MB} + \overrightarrow {BC} + \overrightarrow {CN} \);

\(\overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {AD} + \overrightarrow {DN} \).

Suy ra \(2\overrightarrow {MN} = \overrightarrow {MB} + \overrightarrow {MA} + \overrightarrow {BC} + \overrightarrow {AD} + \overrightarrow {CN} + \overrightarrow {DN} \)\( = \overrightarrow {BC} + \overrightarrow {AD} \)\( = \overrightarrow {BA} + \overrightarrow {AC} + \overrightarrow {AB} + \overrightarrow {BD} \)\( = \overrightarrow {AC} + \overrightarrow {BD} \).

Đáp án: a) Đúng; b) Đúng; c) Sai; d) Đúng.

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP