Câu hỏi:

31/08/2025 10 Lưu

Một chiếc cân đòn tay đang cân một vật có khối lượng \(m = 3\,{\rm{kg}}\)được thiết kế với đĩa cân được giữ bởi bốn đoạn xích \(SA\,,\,SB\,,\,SC\,,\,SD\) sao cho \(S.ABCD\) là hình chóp tứ giác đều có \(\widehat {ASC} = 90^\circ \). Biết độ lớn của lực căng cho mỗi sợi xích có dạng \(\frac{{a\sqrt 2 }}{4}\). Lấy \(g = 10\,{\rm{m/}}{{\rm{s}}^{\rm{2}}}\), khi đó giá trị của \[a\] bằng bao nhiêu?

Một chiếc cân đòn tay đang cân một vật có khối lượng \(m = 3\,{\rm{kg}}\)được thiết kế với đĩa cân được giữ bởi bốn đoạn xích \(SA\,,\,SB\,,\,SC\,,\,SD\) sao cho \(S.ABCD\) là hình chóp tứ gi (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Một chiếc cân đòn tay đang cân một vật có khối lượng \(m = 3\,{\rm{kg}}\)được thiết kế với đĩa cân được giữ bởi bốn đoạn xích \(SA\,,\,SB\,,\,SC\,,\,SD\) sao cho \(S.ABCD\) là hình chóp tứ gi (ảnh 2)

Gọi \(O\) là tâm của hình vuông \(ABCD\).

Ta có \[\overrightarrow {{\rm{O}}A} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \Leftrightarrow \overrightarrow {O\,S} + \overrightarrow {SA} + \overrightarrow {OS} + \overrightarrow {SB} + \overrightarrow {OS} + \overrightarrow {SC} + \overrightarrow {OS} + \overrightarrow {SD} = \overrightarrow 0 \]

\[ \Leftrightarrow \overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {SD} = - 4\overrightarrow {OS} = 4\overrightarrow {SO} \Rightarrow \left| {\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {SD} } \right| = \left| {4\overrightarrow {SO} } \right| = 4SO\].

Trọng lượng của vật nặng là \(P = mg = 3.10 = 30\,\left( N \right)\). Suy ra \(4\left| {\overrightarrow {SO} } \right| = P = 30\,\left( N \right) \Rightarrow SO = \frac{{15}}{2}\).

Lại có tam giác \(ASC\) vuông cân tại \(S\) nên

\(SO = SA.\sin \widehat {SAC} \Rightarrow SA = \frac{{SO}}{{\sin \widehat {SAC}}} = \frac{{\frac{{15}}{2}}}{{\sin 45^\circ }} = \frac{{15\sqrt 2 }}{2} = \frac{{30\sqrt 2 }}{4} \Rightarrow a = 30\).

Vậy \(a = 30\).

Trả lời: 30.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi I là tâm hình vuông ABCD. gọi G là trọng tâm của tam giác AB'C.
(a) \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} (ảnh 1)

a) Theo quy tắc hình hộp ta có \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} = \overrightarrow {AC'} \).

b) Vì G là trọng tâm AB'C nên \(\overrightarrow {GA} + \overrightarrow {GB'} + \overrightarrow {GC} = \overrightarrow 0 \).

c) Theo quy tắc hình bình hành \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \) mà \(\overrightarrow {AC} = \overrightarrow {A'C'} \) nên \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {A'C'} \).

d) Xét BDB' có I là trung điểm của BD và \(B'G = \frac{2}{3}B'I\) nên G là trọng tâm BDB'.

Gọi J là tâm của hình bình hành BDD'B'.

Khi đó \(\overrightarrow {BG} = \frac{2}{3}\overrightarrow {BJ} = \frac{2}{3}.\frac{1}{2}\overrightarrow {BD'} \)\( \Rightarrow \overrightarrow {BD'} = 3\overrightarrow {BG} \).

Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.

Lời giải

Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB, CD và G là trung điểm MN.
(a) \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overri (ảnh 1)

a) Có \(\overrightarrow {GA} + \overrightarrow {GB} = 2\overrightarrow {GM} ;\overrightarrow {GC} + \overrightarrow {GD} = 2\overrightarrow {GN} \).

Do đó \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = 2\left( {\overrightarrow {GM} + \overrightarrow {GN} } \right) = \overrightarrow 0 \).

b) \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MD} \)\( = 4\overrightarrow {MG} + \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} \)\( = 4\overrightarrow {MG} \).

c) d) Ta có \(\overrightarrow {MN} = \overrightarrow {MB} + \overrightarrow {BC} + \overrightarrow {CN} \);

\(\overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {AD} + \overrightarrow {DN} \).

Suy ra \(2\overrightarrow {MN} = \overrightarrow {MB} + \overrightarrow {MA} + \overrightarrow {BC} + \overrightarrow {AD} + \overrightarrow {CN} + \overrightarrow {DN} \)\( = \overrightarrow {BC} + \overrightarrow {AD} \)\( = \overrightarrow {BA} + \overrightarrow {AC} + \overrightarrow {AB} + \overrightarrow {BD} \)\( = \overrightarrow {AC} + \overrightarrow {BD} \).

Đáp án: a) Đúng; b) Đúng; c) Sai; d) Đúng.

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP