Thời gian (phút) truy cập internet mỗi buổi tối của một số học sinh được cho trong bảng sau:
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là
15,25.
20.
4,75.
5,2.
Quảng cáo
Trả lời:

Đáp án đúng: C
Ta có n = 3 + 12 + 15 + 24 + 2 = 56.
Gọi x1; x2; ...; x56 lần lượt là thời gian truy cập internet mỗi buổi tối của 56 học sinh được sắp theo thứ tự không giảm.
Ta có \({Q_1} = \frac{{{x_{14}} + {x_{15}}}}{2}\) mà x14; x15 [12,5; 15,5) nên nhóm này chứa tứ phân vị thứ nhất.
Ta có \({Q_1} = 12,5 + \frac{{\frac{{56}}{4} - 3}}{{12}}.3 = 15,25\).
Ta có \({Q_3} = \frac{{{x_{42}} + {x_{43}}}}{2}\) mà \({x_{42}};{x_{43}} \in \left[ {18,5;21,5} \right)\)nên nhóm này chứa tứ phân vị thứ ba.
Ta có \({Q_3} = 18,5 + \frac{{\frac{{3.56}}{4} - 30}}{{24}}.3 = 20\).
Do đó \({\Delta _Q} = 20 - 15,25 = 4,75\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Khoảng biến thiên R = 30 – 0 = 30.
b) Gọi x1; x2; …; x30 là thời gian sử dụng điện thoại của 30 học sinh được sắp theo thứ tự không giảm.
Ta có Q3 = x23 [15; 20) nên nhóm này chứa tứ phân vị thứ ba.
c)
Thời gian (giờ) | [0; 5) | [5; 10) | [10; 15) | [15; 20) | [20; 25) | [25; 30) |
Giá trị đại diện | 2,5 | 7,5 | 12,5 | 17,5 | 22,5 | 27,5 |
Số học sinh | 2 | 6 | 8 | 9 | 3 | 2 |
d) Ta có Q1 = x8 [5; 10) nên nhóm này chứa tứ phân vị thứ nhất.
Ta có \({Q_1} = 5 + \frac{{\frac{{30}}{4} - 2}}{6}.5 = \frac{{115}}{{12}}\).
Q3 = x23 [15; 20) nên nhóm này chứa tứ phân vị thứ ba.
Ta có \({Q_3} = 15 + \frac{{\frac{{3.30}}{4} - 16}}{9}.5 = \frac{{335}}{{18}}\).
Suy ra \({\Delta _Q} = \frac{{335}}{{18}} - \frac{{115}}{{12}} \approx 9,03 < 10\).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Sai.
Lời giải
a) Cỡ mẫu n = 40.
Gọi x1; x2; ...; x40 lần lượt là điểm thi môn Toán của 40 học sinh lớp 12A được sắp theo thứ tự không giảm.
Ta có \({Q_1} = \frac{{{x_{10}} + {x_{11}}}}{2}\) mà x10; x11 [4; 6) nên nhóm này chứa tứ phân vị thứ nhất.
Ta có \({Q_1} = 4 + \frac{{\frac{{40}}{4} - 6}}{{20}}.2 = \frac{{22}}{5}\).
Ta có \({Q_3} = \frac{{{x_{30}} + {x_{31}}}}{2}\) mà x30; x31 [6; 8) nên nhóm này chứa tứ phân vị thứ ba.
Ta có \({Q_3} = 6 + \frac{{\frac{{3.40}}{4} - 26}}{8}.2 = 7\).
Suy ra \({\Delta _Q} = 7 - \frac{{22}}{5} = \frac{{13}}{5} = 2,6\).
b) Khoảng biến thiên điểm thi của lớp 12A là R = 10 – 0 = 10.
c) Cỡ mẫu n = 40.
Gọi y1; y2; ...; y40 lần lượt là điểm thi môn Toán của 40 học sinh lớp 12B được sắp theo thứ tự không giảm.
Ta có \({Q_1} = \frac{{{y_{10}} + {y_{11}}}}{2}\) mà y10; y11 [4; 6) nên nhóm này chứa tứ phân vị thứ nhất.
Ta có \({Q_1} = 4 + \frac{{\frac{{40}}{4} - 5}}{{10}}.2 = 5\).
Ta có \({Q_3} = \frac{{{y_{30}} + {y_{31}}}}{2}\) mà y30; y31 [6; 8) nên nhóm này chứa tứ phân vị thứ ba.
Ta có \({Q_3} = 6 + \frac{{\frac{{3.40}}{4} - 15}}{{18}}.2 = \frac{{23}}{3}\).
Suy ra \({\Delta _Q} = \frac{{23}}{3} - 5 = \frac{8}{3} \approx 2,7\).
Nên điểm thi môn Toán của lớp 12A đồng đều hơn lớp 12B.
d) Khoảng biến thiên điểm thi của lớp 12B là 10 − 2 = 8.
Nếu so sánh theo khoảng biến thiên thì mức độ phân tán điểm thi của lớp 12B đồng đều hơn.
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.