Câu hỏi:

04/09/2025 25 Lưu

Cho tứ diện \(ABCD\), gọi \(G\)\(E\) lần lượt là trọng tâm của tam giác \(ABD\)\(ABC\). Mệnh đề nào dưới đây đúng?     

A. \(GE\) \(CD\) chéo nhau.                                                                                  
B. \(GE{\rm{//}}CD\).     
C. \(GE\) \(AD\) cắt nhau.                                                                                 
D. \(GE\) \(CD\) cắt nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Mệnh đề nào dưới đây đúng? (ảnh 1)

Gọi \(H\) là trung điểm \(AB\). Khi đó \(G\)\(E\) lần lượt là trọng tâm của tam giác \(ABD\)\(ABC\) nên \[\frac{{HG}}{{HD}} = \frac{{HE}}{{HC}} = \frac{1}{3}\]. Suy ra \(GE{\rm{//}}CD\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(A = \cos \left( {5\pi - x} \right) - \sin \left( {\frac{{3\pi }}{2} + x} \right) + \tan \left( {\frac{{3\pi }}{2} - x} \right) + \cot \left( {3\pi - x} \right)\)

\( = \cos \left( {4\pi + \pi - x} \right) - \sin \left( {2\pi - \frac{\pi }{2} + x} \right) + \tan \left( {\pi + \frac{\pi }{2} - x} \right) + \cot \left( { - x} \right)\)

\( = \cos \left( {\pi - x} \right) + \sin \left( {\frac{\pi }{2} - x} \right) + \tan \left( {\frac{\pi }{2} - x} \right) - \cot x\)

\( = - \cos x + \cos x + \cot x - \cot x = 0\).

Đáp án: 0.

Lời giải

Phương trình \(\cos 2x = m - 1\) có nghiệm khi và chỉ khi \( - 1 \le m - 1 \le 1 \Leftrightarrow 0 \le m \le 2.\)

\(m \in \mathbb{Z}\) nên \(m \in \left\{ {0\,;\,1\,;\,2} \right\}\). Vậy có 3 giá trị nguyên của tham số \(m\) thỏa mãn.

Đáp án: \[3\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(x = \frac{{k\pi }}{2},k \in \mathbb{Z}.\)           
B. \(x = k\pi ,k \in \mathbb{Z}.\)                  
C. \(x = k2\pi ,k \in \mathbb{Z}.\)                          
D. \(x = \frac{{k\pi }}{6},k \in \mathbb{Z}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Số hạng thứ \[103\].     
B. Số hạng thứ \[102\].      
C. Số hạng thứ \[101\].                                   
D. Số hạng thứ \[104\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP