Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành tâm \[O\]. Gọi \(M\), \(N\) lần lượt là trung điểm của các cạnh \(SA\) và \(SC\).
a) Chứng minh \[MN{\rm{//}}\left( {ABCD} \right).\]
b) Gọi \[P\] là trung điểm \[BO\]. Xác định giao điểm \(Q\) của cạnh \(SD\) và mặt phẳng \(\left( {MNP} \right)\). Tính tỷ số \(\frac{{SQ}}{{SD}}\).
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành tâm \[O\]. Gọi \(M\), \(N\) lần lượt là trung điểm của các cạnh \(SA\) và \(SC\).
a) Chứng minh \[MN{\rm{//}}\left( {ABCD} \right).\]
b) Gọi \[P\] là trung điểm \[BO\]. Xác định giao điểm \(Q\) của cạnh \(SD\) và mặt phẳng \(\left( {MNP} \right)\). Tính tỷ số \(\frac{{SQ}}{{SD}}\).
Quảng cáo
Trả lời:

a) Ta có \[MN\] là đường trung bình tam giác \[SAC\].
Suy ra \[MN\,{\rm{//}}\,AC\].
Do đó: \[\left\{ \begin{array}{l}MN{\rm{//}}AC\\MN \not\subset \left( {ABCD} \right);AC \subset \left( {ABCD} \right)\end{array} \right. \Rightarrow MN{\rm{//}}\left( {ABCD} \right).\]
b) Gọi \[I\] là giao điểm của \[MN\] và \[SO\].
\(Q\) là giao điểm của \[PI\] và \[SD\].
Ta có \[Q \in PI,PI \subset \left( {MNP} \right) \Rightarrow Q \in \left( {MNP} \right).\]
Mà \[Q \in SD\]. Suy ra \(Q\) là giao điểm của \(SD\) và mặt phẳng \(\left( {MNP} \right)\).
Chứng minh được \[I\]là trung điểm \[SO\] nên \[PI\] là đường trung bình tam giác \[SBO\].
Suy ra \[PI{\rm{//}}SB\] hay \[PQ{\rm{//}}SB\].
Xét tam giác SBD có \[PQ{\rm{//}}SB\] nên \(\frac{{SQ}}{{SD}} = \frac{{BP}}{{BD}} = \frac{1}{4}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(I,J\) lần lượt là giao điểm của \(MN\) với \(AB\) và \(AD\). Gọi \(Q\) là giao điểm của \(SB\) và \(IP\); gọi \(R\) là giao điểm của \(SD\) và \(JP\).
Khi đó, thiết diện của hình chóp \(S.ABCD\) và mặt phẳng \(\left( {MNP} \right)\) là ngũ giác \(MNRPQ\).
Đáp án: \(5\).
Lời giải
Để độ sâu của mực nước là \(15{\rm{\;m}}\) thì:
\(h = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12 = 15 \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = 1 \Leftrightarrow \frac{{\pi t}}{6} + 1 = k2\pi \,\,\left( {k \in \mathbb{Z}} \right) \Leftrightarrow t = - \frac{6}{\pi } + 12k\,\,\left( {k \in \mathbb{Z}} \right)\).
Do \(0 \le t < 24{\rm{ n\^e n }}0 \le - \frac{6}{\pi } + 12k < 24\)\( \Leftrightarrow \frac{6}{\pi } \le 12k < 24 + \frac{6}{\pi } \Leftrightarrow \frac{1}{{2\pi }} \le k < 2 + \frac{1}{{2\pi }}\).
Mà \(k \in \mathbb{Z}\) nên \(k \in \left\{ {1\,;2} \right\}\).
Với \[k = 1\] thì \(t = - \frac{6}{\pi } + 12 \cdot 1 \approx 10,09\) (giờ);
Với \[k = 2\] thì \(t = - \frac{6}{\pi } + 12 \cdot 2 \approx 22,09\) (giờ).
Vậy lúc 10,09 giờ và 22,09 giờ thì mực nước có độ sâu là 15 m.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.