Một công ty phần mềm tuyển một chuyên gia về công nghệ thông tin với mức lương năm đầu tiên là \(300\) triệu đồng và cam kết tăng thêm \(5\% \) lương mỗi năm so với năm liền kề nếu hoàn thành tốt công việc được giao. Tính tổng số tiền lương mà chuyên gia đó nhận được sau khi làm việc cho công ty \(10\) năm biết rằng người đó luôn hoàn thành tốt công việc (làm tròn kết quả đến hàng đơn vị theo đơn vị triệu đồng).
Một công ty phần mềm tuyển một chuyên gia về công nghệ thông tin với mức lương năm đầu tiên là \(300\) triệu đồng và cam kết tăng thêm \(5\% \) lương mỗi năm so với năm liền kề nếu hoàn thành tốt công việc được giao. Tính tổng số tiền lương mà chuyên gia đó nhận được sau khi làm việc cho công ty \(10\) năm biết rằng người đó luôn hoàn thành tốt công việc (làm tròn kết quả đến hàng đơn vị theo đơn vị triệu đồng).
Quảng cáo
Trả lời:
Lương hằng năm (triệu đồng) của chuyên gia lập thành một cấp số nhân có số hạng đầu \({u_1} = 300\) và công bội \(q = 1 + 5\% = 1,05\).
Tổng số tiền lương của chuyên gia đó sau \(10\) năm bằng tổng của \(10\) số hạng đầu của cấp số nhân trên.
Vậy \({S_{10}} = \frac{{{u_1}\left( {1 - {q^{10}}} \right)}}{{1 - q}} = \frac{{300\left[ {1 - {{\left( {1,05} \right)}^{10}}} \right]}}{{1 - 1,05}} \approx 3773\) (triệu đồng).
Đáp án: 3773.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(\sqrt 2 \cos \left( {x + \frac{\pi }{3}} \right) = 1 \Leftrightarrow \cos \left( {x + \frac{\pi }{3}} \right) = \frac{{\sqrt 2 }}{2} = \cos \frac{\pi }{4}\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x + \frac{\pi }{3} = \frac{\pi }{4} + k2\pi }\\{x + \frac{\pi }{3} = - \frac{\pi }{4} + k2\pi }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - \frac{\pi }{{12}} + k2\pi }\\{x = - \frac{{7\pi }}{{12}} + k2\pi }\end{array}\quad \left( {k \in \mathbb{Z}} \right)} \right.\).
Vì \(x \in \left[ {0;2\pi } \right]\) nên chọn \(k = 1\) hay \(x = \frac{{ - \pi }}{{12}} + 2\pi = \frac{{23\pi }}{{12}};\,\,x = - \frac{{7\pi }}{{12}} + 2\pi = \frac{{17\pi }}{{12}}\).
Vậy phương trình \(\sqrt 2 {\rm{cos}}\left( {x + \frac{\pi }{3}} \right) = 1\) có 2 nghiệm thuộc đoạn \(\left[ {0;2\pi } \right]\).
Đáp án: 2.
Lời giải

Gọi \(I,J\) lần lượt là giao điểm của \(MN\) với \(AB\) và \(AD\). Gọi \(Q\) là giao điểm của \(SB\) và \(IP\); gọi \(R\) là giao điểm của \(SD\) và \(JP\).
Khi đó, thiết diện của hình chóp \(S.ABCD\) và mặt phẳng \(\left( {MNP} \right)\) là ngũ giác \(MNRPQ\).
Đáp án: \(5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.