Câu hỏi:

04/09/2025 14 Lưu

Một công ty phần mềm tuyển một chuyên gia về công nghệ thông tin với mức lương năm đầu tiên là \(300\) triệu đồng và cam kết tăng thêm \(5\% \) lương mỗi năm so với năm liền kề nếu hoàn thành tốt công việc được giao. Tính tổng số tiền lương mà chuyên gia đó nhận được sau khi làm việc cho công ty \(10\) năm biết rằng người đó luôn hoàn thành tốt công việc (làm tròn kết quả đến hàng đơn vị theo đơn vị triệu đồng).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lương hằng năm (triệu đồng) của chuyên gia lập thành một cấp số nhân có số hạng đầu \({u_1} = 300\) và công bội \(q = 1 + 5\% = 1,05\).

Tổng số tiền lương của chuyên gia đó sau \(10\) năm bằng tổng của \(10\) số hạng đầu của cấp số nhân trên.

Vậy \({S_{10}} = \frac{{{u_1}\left( {1 - {q^{10}}} \right)}}{{1 - q}} = \frac{{300\left[ {1 - {{\left( {1,05} \right)}^{10}}} \right]}}{{1 - 1,05}} \approx 3773\) (triệu đồng).

Đáp án: 3773.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

VVVVVVV (ảnh 1)

Gọi \(I,J\) lần lượt là giao điểm của \(MN\) với \(AB\)\(AD\). Gọi \(Q\) là giao điểm của \(SB\)\(IP\); gọi \(R\) là giao điểm của \(SD\)\(JP\).

Khi đó, thiết diện của hình chóp \(S.ABCD\) và mặt phẳng \(\left( {MNP} \right)\) là ngũ giác \(MNRPQ\).

Đáp án: \(5\).

Lời giải

Để độ sâu của mực nước là \(15{\rm{\;m}}\) thì:

\(h = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12 = 15 \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = 1 \Leftrightarrow \frac{{\pi t}}{6} + 1 = k2\pi \,\,\left( {k \in \mathbb{Z}} \right) \Leftrightarrow t = - \frac{6}{\pi } + 12k\,\,\left( {k \in \mathbb{Z}} \right)\).

Do \(0 \le t < 24{\rm{ n\^e n }}0 \le - \frac{6}{\pi } + 12k < 24\)\( \Leftrightarrow \frac{6}{\pi } \le 12k < 24 + \frac{6}{\pi } \Leftrightarrow \frac{1}{{2\pi }} \le k < 2 + \frac{1}{{2\pi }}\).

\(k \in \mathbb{Z}\) nên \(k \in \left\{ {1\,;2} \right\}\).

Với \[k = 1\] thì \(t = - \frac{6}{\pi } + 12 \cdot 1 \approx 10,09\) (giờ);

Với \[k = 2\] thì \(t = - \frac{6}{\pi } + 12 \cdot 2 \approx 22,09\) (giờ).

Vậy lúc 10,09 giờ và 22,09 giờ thì mực nước có độ sâu là 15 m.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP