Câu hỏi:

04/09/2025 69 Lưu

Có bao nhiêu nghiệm của phương trình \(\sqrt 2 {\rm{cos}}\left( {x + \frac{\pi }{3}} \right) = 1\) thuộc đoạn \(\left[ {0;2\pi } \right]\)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(\sqrt 2 \cos \left( {x + \frac{\pi }{3}} \right) = 1 \Leftrightarrow \cos \left( {x + \frac{\pi }{3}} \right) = \frac{{\sqrt 2 }}{2} = \cos \frac{\pi }{4}\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x + \frac{\pi }{3} = \frac{\pi }{4} + k2\pi }\\{x + \frac{\pi }{3} = - \frac{\pi }{4} + k2\pi }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - \frac{\pi }{{12}} + k2\pi }\\{x = - \frac{{7\pi }}{{12}} + k2\pi }\end{array}\quad \left( {k \in \mathbb{Z}} \right)} \right.\).

\(x \in \left[ {0;2\pi } \right]\) nên chọn \(k = 1\) hay \(x = \frac{{ - \pi }}{{12}} + 2\pi = \frac{{23\pi }}{{12}};\,\,x = - \frac{{7\pi }}{{12}} + 2\pi = \frac{{17\pi }}{{12}}\).

Vậy phương trình \(\sqrt 2 {\rm{cos}}\left( {x + \frac{\pi }{3}} \right) = 1\) 2 nghiệm thuộc đoạn \(\left[ {0;2\pi } \right]\).

Đáp án: 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[ - \frac{{113}}{{144}}.\]                                       
B. \[ - \frac{{115}}{{144}}.\]            
C. \[ - \frac{{117}}{{144}}.\]            
D. \[ - \frac{{119}}{{144}}.\]

Lời giải

Ta có \[\cos \left( {a + b} \right) \cdot \cos \left( {a - b} \right) = \frac{1}{2}\left[ {\cos 2a + \cos 2b} \right]\].

\(\cos 2a = 2{\cos ^2}a - 1 = - \frac{7}{9}\); \(\cos 2b = 2{\cos ^2}b - 1 = - \frac{7}{8}\).

Do đó \[\cos \left( {a + b} \right) \cdot \cos \left( {a - b} \right) = \frac{1}{2}\left[ {\cos 2a + \cos 2b} \right] = \frac{1}{2}\left( { - \frac{7}{9} - \frac{7}{8}} \right) = - \frac{{119}}{{144}}\]. Chọn D.

Lời giải

Để độ sâu của mực nước là \(15{\rm{\;m}}\) thì:

\(h = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12 = 15 \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = 1 \Leftrightarrow \frac{{\pi t}}{6} + 1 = k2\pi \,\,\left( {k \in \mathbb{Z}} \right) \Leftrightarrow t = - \frac{6}{\pi } + 12k\,\,\left( {k \in \mathbb{Z}} \right)\).

Do \(0 \le t < 24{\rm{ n\^e n }}0 \le - \frac{6}{\pi } + 12k < 24\)\( \Leftrightarrow \frac{6}{\pi } \le 12k < 24 + \frac{6}{\pi } \Leftrightarrow \frac{1}{{2\pi }} \le k < 2 + \frac{1}{{2\pi }}\).

\(k \in \mathbb{Z}\) nên \(k \in \left\{ {1\,;2} \right\}\).

Với \[k = 1\] thì \(t = - \frac{6}{\pi } + 12 \cdot 1 \approx 10,09\) (giờ);

Với \[k = 2\] thì \(t = - \frac{6}{\pi } + 12 \cdot 2 \approx 22,09\) (giờ).

Vậy lúc 10,09 giờ và 22,09 giờ thì mực nước có độ sâu là 15 m.

Câu 3

A. \(\frac{{18\pi }}{7}\).   
B. \(\frac{{7\pi }}{{18}}\).                               
C. \(\frac{{9\pi }}{7}\).     
D. \(\frac{{7\pi }}{9}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(BG\)\(HD\) chéo nhau.                                   
B. \(BF\)\(AD\) chéo nhau.     
C. \(AB\) song song với \(HG\).                                 
D. \(CG\) cắt \(HE\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP