Thể tích nước của một bể bơi sau \[t\] phút bơm được tính theo công thức \(V\left( t \right) = \frac{1}{{100}}\left( {30{t^3} - \frac{{{t^4}}}{4}} \right)\)(\({{\rm{m}}^{\rm{3}}}\)) \(\left( {0 \le t \le 90} \right)\). Tốc độ bơm nước tại thời điểm \[t\] được tính bởi \(v\left( t \right) = V'\left( t \right)\).
a) Thể tích nước sau \(10\) phút là 80 (\({{\rm{m}}^{\rm{3}}}\)).
b) Tốc độ bơm nước tại thời điểm \[t = 20\] phút là 280 (\[{{\rm{m}}^{\rm{3}}}\]/phút).
c) Sau \(60\) phút, tốc độ bơm nước giảm.
d) Tốc độ bơm nước cao nhất là \(1000\) (\[{{\rm{m}}^{\rm{3}}}\]/phút).
Thể tích nước của một bể bơi sau \[t\] phút bơm được tính theo công thức \(V\left( t \right) = \frac{1}{{100}}\left( {30{t^3} - \frac{{{t^4}}}{4}} \right)\)(\({{\rm{m}}^{\rm{3}}}\)) \(\left( {0 \le t \le 90} \right)\). Tốc độ bơm nước tại thời điểm \[t\] được tính bởi \(v\left( t \right) = V'\left( t \right)\).
a) Thể tích nước sau \(10\) phút là 80 (\({{\rm{m}}^{\rm{3}}}\)).
b) Tốc độ bơm nước tại thời điểm \[t = 20\] phút là 280 (\[{{\rm{m}}^{\rm{3}}}\]/phút).
c) Sau \(60\) phút, tốc độ bơm nước giảm.
d) Tốc độ bơm nước cao nhất là \(1000\) (\[{{\rm{m}}^{\rm{3}}}\]/phút).
Quảng cáo
Trả lời:

a) Thể tích nước sau \(10\) phút là \(V\left( {10} \right) = \frac{1}{{100}}\left( {{{30.10}^3} - \frac{{{{10}^4}}}{4}} \right)\)\( = 275\)(\({{\rm{m}}^{\rm{3}}}\)).
b) Tốc độ bơm nước tại thời điểm \[t\] được tính bởi \(v\left( t \right) = V'\left( t \right) = \frac{1}{{100}}\left( {90{t^2} - {t^3}} \right)\)
Tốc độ bơm nước tại thời điểm \[t = 20\] phút là \(v\left( {20} \right) = \frac{1}{{100}}\left( {{{90.20}^2} - {{20}^3}} \right) = 280\)(\[{{\rm{m}}^{\rm{3}}}\]/phút).
c) Xét hàm số \(v\left( t \right) = \frac{1}{{100}}\left( {90{t^2} - {t^3}} \right)\) là hàm số biểu thị tốc độ bơm nước tại thời điểm \(t\).
Ta có: \(v'\left( t \right) = \frac{1}{{100}}\left( {180t - 3{t^2}} \right)\)
\(v'\left( t \right) = 0 \Leftrightarrow - 3{t^2} + 180t = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t = 60\end{array} \right.\)
Bảng biến thiên
Vậy sau \(60\) phút, tốc độ bơm nước giảm.
d) Dựa vào bảng biến thiên của hàm số \(v\left( t \right)\)ta thấy tốc độ bơm nước cao nhất là \(1080\) (\[{{\rm{m}}^{\rm{3}}}\]/phút).
Đáp án: a) Sai; b) Đúng; c) Đúng; c) Sai.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\) là số hành khách trên mỗi chuyến xe để số tiền thu được là lớn nhất \(\left( {0 < x \le 60} \right)\).
Gọi \(F\left( x \right)\) là hàm lợi nhuận thu được (\(F\left( x \right)\): đồng)
Số tiền thu được: \(F\left( x \right) = {\left( {300 - \frac{{5x}}{2}} \right)^2}.x = 90000x - 1500{x^2} + \frac{{25}}{4}{x^3}\)
Bài toán trở thành tìm giá trị lớn nhất của hàm số:
\(F'\left( x \right) = 90000 - 3000x + \frac{{75}}{4}{x^2};\,F'\left( x \right) = 0 \Leftrightarrow 90000 - 3000x + \frac{{75}}{4}{x^2} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 120({\rm{ktm)}}\\x = 40(tm)\end{array} \right.\).
Bảng biến thiên
Vậy để thu được số tiền lớn nhất thì trên mỗi chuyến xe khách đó phải chở 40 người. Chọn B.
Câu 2
A. \(1418000\) đồng.
B. \(1403000\) đồng.
Lời giải
Gọi \(x\) là chiều rộng của đáy thùng, \(x > 0\), đơn vị \({\rm{m}}\).
\( \Rightarrow \) chiều dài của đáy thùng là: \(2x\).
Ta có \(V = x.2x.h = 10\) \( \Rightarrow h = \frac{5}{{{x^2}}}\).
Chi phí làm đáy thùng là: \(2{x^2}.75 = 150{x^2}\) (đơn vị nghìn đồng).
Chi phí làm diện tích xung quanh là : \(\left( {2x.\frac{5}{{{x^2}}} + 2.2x.\frac{5}{{{x^2}}}} \right).55 = \frac{{1650}}{x}\) (đơn vị nghìn đồng).
\( \Rightarrow \) Chi phí làm thùng là : \(T = 150{x^2} + \frac{{1650}}{x}\) (đơn vị nghìn đồng).
Xét hàm số \(T = 150{x^2} + \frac{{1650}}{x}\), với \(x > 0\).
Ta có \(T'\left( x \right) = 300x - \frac{{1650}}{{{x^2}}}\) ; \(T'\left( x \right) = 0 \Leftrightarrow x = \sqrt[3]{{\frac{{11}}{2}}}\).
Bảng biến thiên
Dựa vào bảng biến thiên \(T\left( x \right)\) đạt giá trị nhỏ nhất tại \(x = \sqrt[3]{{\frac{{11}}{2}}}\).
Vậy chi phí ít nhất bằng \(T = 150{\sqrt[3]{{\frac{{11}}{2}}}^2} + \frac{{1650}}{{\sqrt[3]{{\frac{{11}}{2}}}}} \approx 1402000\) đồng. Chọn C.
Câu 3
A. \(20\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(18\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(t = 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. 289 \(\left( {{\rm{m/s}}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. 2250000.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.