Câu hỏi:

12/09/2025 9 Lưu

Một vật chuyển động theo quy luật \(s = - 2{t^3} + 24{t^2} + 9t - 3\) với \(t\) là khoảng thời gian tính từ lúc bắt đầu chuyển động và \(s\) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(v\left( t \right) = s' = - 6{t^2} + 48t + 9\). Xét hàm số \(v\left( t \right) = - 6{t^2} + 48t + 9\), \(t \in \left[ {0;10} \right]\).

Ta có \(v'\left( t \right) = - 12t + 48 = 0 \Leftrightarrow t = 4\)(Nhận). Ta có \(\left\{ {\begin{array}{*{20}{c}}{v\left( 0 \right) = 9}\\{v\left( 4 \right) = 105}\\{v\left( {10} \right) = - 111}\end{array}} \right.\)\( \Rightarrow \mathop {\max }\limits_{t \in \left[ {0;10} \right]} v\left( t \right) = v\left( 4 \right) = 105\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Hàm \(v(t) = x'(t) = 3{t^2} - 12t + 9\).

b) Hàm \(a(t) = v'(t) = 6t - 12\).

c) d)  Tập xác định: \(D = [0; + \infty ]\); \(a(t) = 0 \Leftrightarrow t = 2\)

Bảng biến thiên:

Ảnh có chứa hàng, biểu đồ, văn bản, Sơ đồ

Mô tả được tạo tự động

Vậy trong khoảng từ \[t = 0\] đến \(t = 2\) thì vận tốc của chất điểm giảm, từ \(t = 2\) trở đi thì vận tốc của chất điểm tăng.

Đáp án: a) Đúng;   b) Đúng; c) Sai;   c) Sai.

Lời giải

Ta có: \(f'(t) = \frac{{ - 5000{{\left( {1 + 5{e^{ - t}}} \right)}^\prime }}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^2}}} = \frac{{25000{e^{ - t}}}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^2}}}\)

Tốc độ bán hàng là lớn nhất khi \(f'(t)\) lớn nhất.

Đặt \(h(t) = \frac{{25000{e^{ - t}}}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^2}}}\).

\(h'(t) = \frac{{ - 25000{e^{ - t}}{{\left( {1 + 5{e^{ - t}}} \right)}^2} - 2 \cdot \left( { - 5{e^{ - t}}} \right) \cdot \left( {1 + 5{e^{ - t}}} \right) \cdot 25000{e^{ - t}}}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^4}}}\)

\(\begin{array}{l} = \frac{{ - 25000{e^{ - t}}\left( {1 + 5{e^{ - t}}} \right)\left( {1 + 5{e^{ - t}} - 10{e^{ - t}}} \right)}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^4}}} = \frac{{ - 25000{e^{ - t}}\left( {1 - 5{e^{ - t}}} \right)}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^3}}}\\h'(t) = 0 \Leftrightarrow \frac{{ - 25000{e^{ - t}}\left( {1 - 5{e^{ - t}}} \right)}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^3}}} = 0 \Leftrightarrow 1 - 5{e^{ - t}} = 0 \Leftrightarrow {e^{ - t}} = \frac{1}{5} \Leftrightarrow t = \ln 5(tm)\end{array}\)

Ta có bảng biến thiên với \(t \in [0; + \infty )\):

Ảnh có chứa văn bản, hàng, biểu đồ, Sơ đồ

Mô tả được tạo tự động

Vậy sau khi phát hành khoảng \(\ln 5 \approx 1,6\) năm thì thì tốc độ bán hàng là lớn nhất.

Trả lời: 1,6.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP