Câu hỏi:

12/09/2025 149 Lưu

Phần III. Trắc nghiệm trả lời ngắn

Giả sử doanh số (tính bằng số sản phẩm) của một sản phẩm mới (trong vòng một số năm nhất định) tuân theo quy luật logistic được mô hình hoá bằng hàm số\(f(t) = \frac{{5000}}{{1 + 5{e^{ - t}}}},t \ge 0,\)trong đó thời gian \(t\) được tính bằng năm, kể từ khi phát hành sản phẩm mới. Khi đó, đạo hàm \(f'(t)\) sẽ biểu thị tốc độ bán hàng. Hỏi sau khi phát hành bao nhiêu năm thì tốc độ bán hàng là lớn nhất? (làm tròn kết quả đến hàng phần mười).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có: \(f'(t) = \frac{{ - 5000{{\left( {1 + 5{e^{ - t}}} \right)}^\prime }}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^2}}} = \frac{{25000{e^{ - t}}}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^2}}}\)

Tốc độ bán hàng là lớn nhất khi \(f'(t)\) lớn nhất.

Đặt \(h(t) = \frac{{25000{e^{ - t}}}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^2}}}\).

\(h'(t) = \frac{{ - 25000{e^{ - t}}{{\left( {1 + 5{e^{ - t}}} \right)}^2} - 2 \cdot \left( { - 5{e^{ - t}}} \right) \cdot \left( {1 + 5{e^{ - t}}} \right) \cdot 25000{e^{ - t}}}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^4}}}\)

\(\begin{array}{l} = \frac{{ - 25000{e^{ - t}}\left( {1 + 5{e^{ - t}}} \right)\left( {1 + 5{e^{ - t}} - 10{e^{ - t}}} \right)}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^4}}} = \frac{{ - 25000{e^{ - t}}\left( {1 - 5{e^{ - t}}} \right)}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^3}}}\\h'(t) = 0 \Leftrightarrow \frac{{ - 25000{e^{ - t}}\left( {1 - 5{e^{ - t}}} \right)}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^3}}} = 0 \Leftrightarrow 1 - 5{e^{ - t}} = 0 \Leftrightarrow {e^{ - t}} = \frac{1}{5} \Leftrightarrow t = \ln 5(tm)\end{array}\)

Ta có bảng biến thiên với \(t \in [0; + \infty )\):

Ảnh có chứa văn bản, hàng, biểu đồ, Sơ đồ

Mô tả được tạo tự động

Vậy sau khi phát hành khoảng \(\ln 5 \approx 1,6\) năm thì thì tốc độ bán hàng là lớn nhất.

Trả lời: 1,6.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\) là số hành khách trên mỗi chuyến xe để số tiền thu được là lớn nhất \(\left( {0 < x \le 60} \right)\).

Gọi \(F\left( x \right)\) là hàm lợi nhuận thu được (\(F\left( x \right)\): đồng)

Số tiền thu được: \(F\left( x \right) = {\left( {300 - \frac{{5x}}{2}} \right)^2}.x = 90000x - 1500{x^2} + \frac{{25}}{4}{x^3}\)

 

Bài toán trở thành tìm giá trị lớn nhất của hàm số:

\(F'\left( x \right) = 90000 - 3000x + \frac{{75}}{4}{x^2};\,F'\left( x \right) = 0 \Leftrightarrow 90000 - 3000x + \frac{{75}}{4}{x^2} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 120({\rm{ktm)}}\\x = 40(tm)\end{array} \right.\).

Bảng biến thiên

A math problem with numbers and symbols

Description automatically generated with medium confidence

Vậy để thu được số tiền lớn nhất thì trên mỗi chuyến xe khách đó phải chở 40 người. Chọn B.

Câu 2

A. \(20\).                                 

B. \(10\).                                 
C. \(1200\).                                 
D. \(1100\).

Lời giải

Xét hàm số \[N(t) = 1000 + 30{t^2} - {t^3}\,(0 \le t \le 30)\].

\(N'\left( t \right) = 60t - 3{t^2}\).

\(N'\left( t \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t = 20\end{array} \right.\).

A picture containing chart

Description automatically generated

Với \(t = 20\) giây thì số vi khuẩn lớn nhất. Chọn A.

Câu 3

A. 289 \(\left( {{\rm{m/s}}} \right)\).                                  

B. 105 \(\left( {{\rm{m/s}}} \right)\).                                              
C. 111 \(\left( {{\rm{m/s}}} \right)\).                                              
D. 487 \(\left( {{\rm{m/s}}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP