Một nhóm học sinh được giao nhiệm vụ làm một hộp không nắp làm bằng từ mảnh bìa như hình vẽ.

Hộp có đáy là một hình vuông cạnh \(x\) (\(cm\)), đường cao là h (\(cm\)) và có thể tích là 100 \(c{m^3}\). Tìm giá trị của \(x\) sao diện tích của mảnh bìa là nhỏ nhất (làm tròn đến hàng phần trăm).
Một nhóm học sinh được giao nhiệm vụ làm một hộp không nắp làm bằng từ mảnh bìa như hình vẽ.
Quảng cáo
Trả lời:

\(V = {x^2}.h = 100 \Rightarrow h = \frac{{100}}{{{x^2}}}\)
Gọi \(S(x)\)là diện tích của mảnh bìa \(S(x) = {x^2} + 4xh = {x^2} + \frac{{400}}{x};x > 0\).
Bài toán trở thành tìm giá trị nhỏ nhất \(S(x)\)trên \((0; + \infty )\)
\(S'(x) = \frac{{2({x^3} - 200)}}{{{x^2}}};S'(x) = 0 \Leftrightarrow x = \sqrt[3]{{200}}\)
Lập bảng biến thiên
Dựa vào bảng biến thiên diện tích của mảnh bìa nhỏ nhất tại điểm \(x = \sqrt[3]{{200}} \approx 5,85\) (cm).
Trả lời: 5,85.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Hàm \(v(t) = x'(t) = 3{t^2} - 12t + 9\).
b) Hàm \(a(t) = v'(t) = 6t - 12\).
c) d) Tập xác định: \(D = [0; + \infty ]\); \(a(t) = 0 \Leftrightarrow t = 2\)
Bảng biến thiên:
Vậy trong khoảng từ \[t = 0\] đến \(t = 2\) thì vận tốc của chất điểm giảm, từ \(t = 2\) trở đi thì vận tốc của chất điểm tăng.
Đáp án: a) Đúng; b) Đúng; c) Sai; c) Sai.
Lời giải
Ta có: \(f'(t) = \frac{{ - 5000{{\left( {1 + 5{e^{ - t}}} \right)}^\prime }}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^2}}} = \frac{{25000{e^{ - t}}}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^2}}}\)
Tốc độ bán hàng là lớn nhất khi \(f'(t)\) lớn nhất.
Đặt \(h(t) = \frac{{25000{e^{ - t}}}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^2}}}\).
\(h'(t) = \frac{{ - 25000{e^{ - t}}{{\left( {1 + 5{e^{ - t}}} \right)}^2} - 2 \cdot \left( { - 5{e^{ - t}}} \right) \cdot \left( {1 + 5{e^{ - t}}} \right) \cdot 25000{e^{ - t}}}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^4}}}\)
\(\begin{array}{l} = \frac{{ - 25000{e^{ - t}}\left( {1 + 5{e^{ - t}}} \right)\left( {1 + 5{e^{ - t}} - 10{e^{ - t}}} \right)}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^4}}} = \frac{{ - 25000{e^{ - t}}\left( {1 - 5{e^{ - t}}} \right)}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^3}}}\\h'(t) = 0 \Leftrightarrow \frac{{ - 25000{e^{ - t}}\left( {1 - 5{e^{ - t}}} \right)}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^3}}} = 0 \Leftrightarrow 1 - 5{e^{ - t}} = 0 \Leftrightarrow {e^{ - t}} = \frac{1}{5} \Leftrightarrow t = \ln 5(tm)\end{array}\)
Ta có bảng biến thiên với \(t \in [0; + \infty )\):
Vậy sau khi phát hành khoảng \(\ln 5 \approx 1,6\) năm thì thì tốc độ bán hàng là lớn nhất.
Trả lời: 1,6.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.