Câu hỏi:

12/09/2025 11 Lưu

Một nhóm học sinh được giao nhiệm vụ làm một hộp không nắp làm bằng từ mảnh bìa như hình vẽ.

Hộp có đáy là một hình vuông cạnh \(x\) (\(cm\)), đường cao là h (\(cm\)) và có thể tích là 100 \(c{m^3}\). Tìm giá trị của \(x\) sao diện tích của mảnh bìa là nhỏ nhất (làm tròn đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(V = {x^2}.h = 100 \Rightarrow h = \frac{{100}}{{{x^2}}}\)

Gọi \(S(x)\)là diện tích của mảnh bìa \(S(x) = {x^2} + 4xh = {x^2} + \frac{{400}}{x};x > 0\).

Bài toán trở thành tìm giá trị nhỏ nhất \(S(x)\)trên \((0; + \infty )\)

\(S'(x) = \frac{{2({x^3} - 200)}}{{{x^2}}};S'(x) = 0 \Leftrightarrow x = \sqrt[3]{{200}}\)

Lập bảng biến thiên

Dựa vào bảng biến thiên diện tích của mảnh bìa nhỏ nhất tại điểm \(x = \sqrt[3]{{200}} \approx 5,85\) (cm).

Trả lời: 5,85.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Hàm \(v(t) = x'(t) = 3{t^2} - 12t + 9\).

b) Hàm \(a(t) = v'(t) = 6t - 12\).

c) d)  Tập xác định: \(D = [0; + \infty ]\); \(a(t) = 0 \Leftrightarrow t = 2\)

Bảng biến thiên:

Ảnh có chứa hàng, biểu đồ, văn bản, Sơ đồ

Mô tả được tạo tự động

Vậy trong khoảng từ \[t = 0\] đến \(t = 2\) thì vận tốc của chất điểm giảm, từ \(t = 2\) trở đi thì vận tốc của chất điểm tăng.

Đáp án: a) Đúng;   b) Đúng; c) Sai;   c) Sai.

Lời giải

Ta có: \(f'(t) = \frac{{ - 5000{{\left( {1 + 5{e^{ - t}}} \right)}^\prime }}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^2}}} = \frac{{25000{e^{ - t}}}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^2}}}\)

Tốc độ bán hàng là lớn nhất khi \(f'(t)\) lớn nhất.

Đặt \(h(t) = \frac{{25000{e^{ - t}}}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^2}}}\).

\(h'(t) = \frac{{ - 25000{e^{ - t}}{{\left( {1 + 5{e^{ - t}}} \right)}^2} - 2 \cdot \left( { - 5{e^{ - t}}} \right) \cdot \left( {1 + 5{e^{ - t}}} \right) \cdot 25000{e^{ - t}}}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^4}}}\)

\(\begin{array}{l} = \frac{{ - 25000{e^{ - t}}\left( {1 + 5{e^{ - t}}} \right)\left( {1 + 5{e^{ - t}} - 10{e^{ - t}}} \right)}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^4}}} = \frac{{ - 25000{e^{ - t}}\left( {1 - 5{e^{ - t}}} \right)}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^3}}}\\h'(t) = 0 \Leftrightarrow \frac{{ - 25000{e^{ - t}}\left( {1 - 5{e^{ - t}}} \right)}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^3}}} = 0 \Leftrightarrow 1 - 5{e^{ - t}} = 0 \Leftrightarrow {e^{ - t}} = \frac{1}{5} \Leftrightarrow t = \ln 5(tm)\end{array}\)

Ta có bảng biến thiên với \(t \in [0; + \infty )\):

Ảnh có chứa văn bản, hàng, biểu đồ, Sơ đồ

Mô tả được tạo tự động

Vậy sau khi phát hành khoảng \(\ln 5 \approx 1,6\) năm thì thì tốc độ bán hàng là lớn nhất.

Trả lời: 1,6.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP