Trong đợt hỗ trợ, tặng quà cho người dân vùng lũ lụt ở miền Trung, một doanh nghiệp cần thuê xe để chở ít nhất 100 người và 6 tấn hàng. Nơi thuê xe có hai loại xe A và B, trong đó xe loại A có 8 chiếc và xe loại B có 6 chiếc. Một chiếc xe loại A cho thuê với giá 4 triệu đồng, một chiếc xe loại B cho thuê với giá 3 triệu đồng. Biết rằng mỗi chiếc xe loại A có thể chở tối đa 20 người và 0,5 tấn hàng; mỗi chiếc xe loại B có thể chở tối đa 10 người và 2 tấn hàng. Nếu là chủ doanh nghiệp, em hãy đề xuất phương án để chi phí thuê xe là ít nhất?
Trong đợt hỗ trợ, tặng quà cho người dân vùng lũ lụt ở miền Trung, một doanh nghiệp cần thuê xe để chở ít nhất 100 người và 6 tấn hàng. Nơi thuê xe có hai loại xe A và B, trong đó xe loại A có 8 chiếc và xe loại B có 6 chiếc. Một chiếc xe loại A cho thuê với giá 4 triệu đồng, một chiếc xe loại B cho thuê với giá 3 triệu đồng. Biết rằng mỗi chiếc xe loại A có thể chở tối đa 20 người và 0,5 tấn hàng; mỗi chiếc xe loại B có thể chở tối đa 10 người và 2 tấn hàng. Nếu là chủ doanh nghiệp, em hãy đề xuất phương án để chi phí thuê xe là ít nhất?
Quảng cáo
Trả lời:

Gọi số xe loại A cần thuê là \(x\,\,\left( {x \ge 0} \right)\).
Số xe loại B cần thuê là \(y\,\,\left( {y \ge 0} \right),x,y \in \mathbb{N}\).
Số người có thể chở tối đa là: \(20x + 10y\) (người).
Số tấn hàng có thể chở tối đa là: \(0,5x + 2y\) (tấn).
Theo đề bài, ta có:
- Cần chở ít nhất 100 người: \(20x + 10y \ge 100\).
- Cần chở ít nhất 6 tấn hàng: \(0,5x + 2y \ge 6\).
- Có 8 chiếc xe loại A và 6 chiếc xe loại B: \(x \le 8\), \(y \le 6\).
- Chi phí bỏ ra: \(F\left( {x;y} \right) = 4x + 3y\) (triệu đồng).
Ta có hệ bất phương trình: \[\left\{ {\begin{array}{*{20}{c}}{20x + 10y \ge 100}\\{0,5x + 2y \ge 6}\\{0 \le x \le 8}\\{0 \le y \le 6}\end{array}} \right.\]\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{2x + y \ge 10}\\{x + 4y \ge 12}\\{0 \le x \le 8}\\{0 \le y \le 6}\end{array}} \right.\] (I).
Bài toán trở thành tìm x, y thoả mãn hệ bất phương trình (I) để \(F\left( {x;y} \right) = 4x + 3y\) nhỏ nhất.
Miền nghiệm của hệ bất phương trình (I) là miền tứ giác ABCD kể cả biên.
Toạ độ 4 đỉnh của miền nghiệm là: \(A\left( {4\,;\,2} \right)\), \(B\left( {8\,;\,1} \right)\), \(C\left( {8\,;\,6} \right)\), \(D\left( {2\,;\,6} \right)\).
Suy ra \(F\left( {x;y} \right) = 4x + 3y\) đạt GTNN bằng 22 tại\(\left( {4;2} \right)\).
Vậy doanh nghiệp nên thuê 4 xe loại A và 2 xe loại B để chi phí thấp nhất, và chi phí thấp nhất là 22 triệu đồng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Các công thức A, B, C đúng theo công thức diện tích tam giác
Công thức D sai, sửa lại thành: \(S = \frac{{abc}}{{{\rm{4R}}}}\). Chọn D.Lời giải
a) Đúng. Ta có \(\sin \alpha = \frac{1}{3} > 0\).
Do \(90^\circ < \alpha < 180^\circ \) nên \(\cos \alpha < 0\). Vậy giá trị \(\sin \alpha \cdot \cos \alpha < 0\).
b) Đúng. Vì \(\cos \alpha < 0\), mà \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\), suy ra \(\cos \alpha = - \sqrt {1 - {{\sin }^2}\alpha } = - \sqrt {1 - \frac{1}{9}} = - \frac{{2\sqrt 2 }}{3}\).
c) Sai. Ta có \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{1}{3}}}{{ - \frac{{2\sqrt 2 }}{3}}} = - \frac{1}{{2\sqrt 2 }} = - \frac{{\sqrt 2 }}{4}\).
d) Đúng. Ta có \(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{{ - \frac{{\sqrt 2 }}{4}}} = - 2\sqrt 2 .\)
Vậy \[\frac{{6\sin \alpha + 3\sqrt 2 \cos \alpha }}{{2\sqrt 2 \tan \alpha + \sqrt 2 \cot \alpha }} = \frac{{6 \cdot \frac{1}{3} + 3\sqrt 2 \cdot \left( { - \frac{{2\sqrt 2 }}{3}} \right)}}{{2\sqrt 2 \cdot \left( { - \frac{{\sqrt 2 }}{4}} \right) + \sqrt 2 \cdot \left( { - 2\sqrt 2 } \right)}} = \frac{2}{5}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.