Câu hỏi:

12/09/2025 5 Lưu

Cho tam giác \(ABC\)\(AB = 4\)cm, \(BC = 7\) cm, \(AC = 9\)cm. Tính \(\cos A

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(\cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2 \cdot AB \cdot AC}} = \frac{{{4^2} + {9^2} - {7^2}}}{{2.4.9}} = \frac{2}{3}\). Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Các công thức A, B, C đúng theo công thức diện tích tam giác

Công thức D sai, sửa lại thành: \(S = \frac{{abc}}{{{\rm{4R}}}}\). Chọn D.

Lời giải

a) Đúng. Ta có \(\sin \alpha = \frac{1}{3} > 0\).

Do \(90^\circ < \alpha < 180^\circ \) nên \(\cos \alpha < 0\). Vậy giá trị \(\sin \alpha \cdot \cos \alpha < 0\).

b) Đúng. \(\cos \alpha < 0\), \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\), suy ra \(\cos \alpha = - \sqrt {1 - {{\sin }^2}\alpha } = - \sqrt {1 - \frac{1}{9}} = - \frac{{2\sqrt 2 }}{3}\).

c) Sai. Ta có \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{1}{3}}}{{ - \frac{{2\sqrt 2 }}{3}}} = - \frac{1}{{2\sqrt 2 }} = - \frac{{\sqrt 2 }}{4}\).

d) Đúng. Ta có \(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{{ - \frac{{\sqrt 2 }}{4}}} = - 2\sqrt 2 .\)

Vậy \[\frac{{6\sin \alpha + 3\sqrt 2 \cos \alpha }}{{2\sqrt 2 \tan \alpha + \sqrt 2 \cot \alpha }} = \frac{{6 \cdot \frac{1}{3} + 3\sqrt 2 \cdot \left( { - \frac{{2\sqrt 2 }}{3}} \right)}}{{2\sqrt 2 \cdot \left( { - \frac{{\sqrt 2 }}{4}} \right) + \sqrt 2 \cdot \left( { - 2\sqrt 2 } \right)}} = \frac{2}{5}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP