Hai bạn Oanh, Cường lần lượt đứng tại vị trí \(O,\,C\) của một tòa nhà. Hai bạn An, Bình lần lượt đứng trên mặt đất tại vị trí mà tại đó nhìn các điểm các góc lần lượt bằng \({\alpha _1} = 30^\circ ,{\alpha _2} = 50^\circ \) và \({\beta _1} = 70^\circ ,{\beta _2} = 80^\circ \) so với phương nằm ngang. Gọi
là hình chiếu của trên đường thẳng , giả sử thẳng hàng và biết khoảng cách giữa hai điểm là \(l = 20\,\,{\rm{m}}\) (Hình vẽ dưới). Gọi là khoảng cách giữa vị trí đứng của Oanh và Cường. Tìm (làm tròn kết quả đến hàng phần trăm).

Hai bạn Oanh, Cường lần lượt đứng tại vị trí \(O,\,C\) của một tòa nhà. Hai bạn An, Bình lần lượt đứng trên mặt đất tại vị trí mà tại đó nhìn các điểm các góc lần lượt bằng \({\alpha _1} = 30^\circ ,{\alpha _2} = 50^\circ \) và \({\beta _1} = 70^\circ ,{\beta _2} = 80^\circ \) so với phương nằm ngang. Gọi là hình chiếu của trên đường thẳng , giả sử thẳng hàng và biết khoảng cách giữa hai điểm là \(l = 20\,\,{\rm{m}}\) (Hình vẽ dưới). Gọi là khoảng cách giữa vị trí đứng của Oanh và Cường. Tìm (làm tròn kết quả đến hàng phần trăm).
Quảng cáo
Trả lời:

Có \(\widehat {CAH} = {\alpha _1} = 30^\circ ,\,\,\widehat {CBH} = {\beta _1} = 70^\circ \)\( \Rightarrow \widehat {ACB} = \widehat {CBH} - \widehat {CAH} = 40^\circ \).
Áp dụng định lí sin vào , ta có: \(\frac{{BC}}{{\sin \widehat {CAH}}} = \frac{{AB}}{{\sin \widehat {ACB}}} \Rightarrow BC = \frac{{20\sin 30^\circ }}{{\sin 40^\circ }}\).
Xét vuông tại
, ta có: \(\sin \widehat {CBH} = \frac{{CH}}{{BC}} \Rightarrow CH = BC\sin \widehat {CBH} = \frac{{20\sin 30^\circ }}{{\sin 40^\circ }} \cdot \sin 70^\circ \).
Có \(\widehat {OAH} = {\alpha _2} = 50^\circ ,\,\,\widehat {OBH} = {\beta _2} = 80^\circ \)\( \Rightarrow \widehat {AOB} = 30^\circ \).
Áp dụng định lí sin vào , ta có: \(\frac{{BO}}{{\sin \widehat {OAH}}} = \frac{{AB}}{{\sin \widehat {AOB}}} \Rightarrow BO = \frac{{20\sin 50^\circ }}{{\sin 30^\circ }}\).
Xét vuông tại
, ta có: \(\sin \widehat {OBH} = \frac{{HO}}{{BO}} \Rightarrow HO = BO\sin \widehat {OBH} = \frac{{20\sin 50^\circ }}{{\sin 30^\circ }} \cdot \sin 80^\circ \).
Vậy \(h = OC = HO - CH = \frac{{20\sin 50^\circ }}{{\sin 30^\circ }} \cdot \sin 80^\circ - \frac{{20\sin 30^\circ }}{{\sin 40^\circ }} \cdot \sin 70^\circ \approx 15,56\) (m).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Ta có \(\sin \alpha = \frac{1}{3} > 0\).
Do \(90^\circ < \alpha < 180^\circ \) nên \(\cos \alpha < 0\). Vậy giá trị \(\sin \alpha \cdot \cos \alpha < 0\).
b) Đúng. Vì \(\cos \alpha < 0\), mà \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\), suy ra \(\cos \alpha = - \sqrt {1 - {{\sin }^2}\alpha } = - \sqrt {1 - \frac{1}{9}} = - \frac{{2\sqrt 2 }}{3}\).
c) Sai. Ta có \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{1}{3}}}{{ - \frac{{2\sqrt 2 }}{3}}} = - \frac{1}{{2\sqrt 2 }} = - \frac{{\sqrt 2 }}{4}\).
d) Đúng. Ta có \(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{{ - \frac{{\sqrt 2 }}{4}}} = - 2\sqrt 2 .\)
Vậy \[\frac{{6\sin \alpha + 3\sqrt 2 \cos \alpha }}{{2\sqrt 2 \tan \alpha + \sqrt 2 \cot \alpha }} = \frac{{6 \cdot \frac{1}{3} + 3\sqrt 2 \cdot \left( { - \frac{{2\sqrt 2 }}{3}} \right)}}{{2\sqrt 2 \cdot \left( { - \frac{{\sqrt 2 }}{4}} \right) + \sqrt 2 \cdot \left( { - 2\sqrt 2 } \right)}} = \frac{2}{5}\].
Lời giải
Các công thức A, B, C đúng theo công thức diện tích tam giác
Công thức D sai, sửa lại thành: \(S = \frac{{abc}}{{{\rm{4R}}}}\). Chọn D.Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.