Câu hỏi:

16/09/2025 751 Lưu

Lớp 10E1 có 35 học sinh làm bài kiểm tra thường xuyên môn Toán. Đề bài gồm 3 bài toán. Sau khi kiểm tra cô giáo tổng hợp được kết quả như sau: có 12 học sinh chỉ giải được bài toán thứ nhất, 14 học sinh giải được bài toán thứ hai, 15 học sinh giải được bài toán thứ ba, 3 học sinh chỉ giải được bài toán thứ hai và thứ ba. Hỏi lớp 10E1 có bao nhiêu học sinh giải được cả 3 bài toán biết rằng mỗi học sinh đều làm được ít nhất một bài?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi x là số học sinh giải được cả 3 bài toán.

       a là số học sinh chỉ làm được bài toán thứ nhất và thứ ba.

       b là số học sinh chỉ làm được bài toán thứ nhất và thứ hai.

Khi đó:

       Số học sinh chỉ làm được bài toán thứ ba là: 15 – a – x – 3 = 12 – x – a (học sinh).

       Số học sinh chỉ làm được bài toán thứ hai là: 14 – b – x – 3 = 11 – x – b (học sinh).

Theo đề ta có phương trình: x + a + b + 3 + 12 + 12 – x – a + 11 – x – b = 35. Do đó x = 3.

Vậy có 3 học sinh giải được cả 3 bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi số bộ sản phẩm loại \[I\] sản xuất trong một ngày là \[x\,\,,\,\,\,\left( {x \ge 0,x \in \mathbb{N}} \right)\].

Số bộ sản phẩm loại \[II\] sản xuất trong một ngày là \[y\,\,,\,\,\,\left( {y \ge 0,y \in \mathbb{N}} \right)\].

Số lãi thu được là \[L = 5x + 4y\] (triệu đồng).

Số giờ làm việc của máy là \[3x + 3y\] (giờ).

Số giờ làm việc của công nhân là \[2x + y\] (giờ).

Theo giả thiết: Một ngày máy làm việc không quá \[15\] giờ, nhân công làm việc không quá \[8\] giờ nên ta có hệ bất phương trình \[\left\{ \begin{array}{l}3x + 3y \le 15\\2x + y \le 8\\x \ge 0\\y \ge 0\end{array} \right.\].

Miền nghiệm của hệ bất phương trình trên là

Một xưởng sản xuất đồ gỗ mỹ nghệ sản suất ra hai bộ sản phẩm loại I và loại II. Mỗi bộ sản phẩm loại I lãi 5 triệu đồng (ảnh 1)

Tính các giá trị của biểu thức \[L = 5x + 4y\] tại các đỉnh của tứ giác là miền nghiệm của hệ bất phương trình trên ta được

\[\left( {x;y} \right) = \left( {0;0} \right) \Rightarrow L = 0\];

\[\left( {x;y} \right) = \left( {4;0} \right) \Rightarrow L = 20\];

\[\left( {x;y} \right) = \left( {3;2} \right) \Rightarrow L = 23\];

\[\left( {x;y} \right) = \left( {0;5} \right) \Rightarrow L = 20\].

Vậy số tiền lãi lớn nhất xưởng đó đạt được trong một ngày là \[23\] triệu đồng.

Lời giải

a) Sai. Ta có \(\frac{{BC}}{{\sin A}} = 2R \Rightarrow R = \frac{{BC}}{{2\sin A}}\).

b) Sai. Ta có BCsinA=ACsinBsinA=BCsinBAC=12sin45°10=325.

c) Đúng. Bán kính đường tròn ngoại tiếp tam giác ΔABC là: R=AC2sinB=102sin45°=52.

d) Sai. Ta có 2R=BCsinA=ACsinB=ABsinC2R=3BC3sinA=2AC2sinB=ABsinC.

Suy ra R=3BC2ACAB23sinA2sinBsinC3BC2ACAB6sinA4sinB2sinC=R=52.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP