Cho tam giác ABC có \(\widehat A = 120^\circ ,b = 8,c = 5\). Tính:
a) Cạnh a và các góc \(\widehat B,\widehat C\).
b) Diện tích tam giác ABC.
c) Bán kính đường tròn ngoại tiếp và đường cao AH của tam giác.
Cho tam giác ABC có \(\widehat A = 120^\circ ,b = 8,c = 5\). Tính:
a) Cạnh a và các góc \(\widehat B,\widehat C\).
b) Diện tích tam giác ABC.
c) Bán kính đường tròn ngoại tiếp và đường cao AH của tam giác.
Quảng cáo
Trả lời:
a) Áp dụng định lí côsin, ta có:
\({a^2} = {b^2} + {c^2} - 2bc\cos A\)
\[ \Leftrightarrow {a^2} = {8^2} + {5^2} - 2.8.5\cos 120^\circ = 129 \Rightarrow a = \sqrt {129} \].
Áp dụng định lí sin, ta có:
\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)\( \Rightarrow \frac{{\sqrt {129} }}{{\sin 120^\circ }} = \frac{8}{{\sin B}} = \frac{5}{{\sin C}}\)
\[ \Rightarrow \left\{ \begin{array}{l}\sin B = \frac{{8.\sin 120^\circ }}{{\sqrt {129} }}\\\sin C = \frac{{5.\sin 120^\circ }}{{\sqrt {129} }}\end{array} \right.\]\[ \Rightarrow \left\{ \begin{array}{l}\widehat B \approx 37,59^\circ \\\widehat C \approx 22,41^\circ \end{array} \right.\].
b) Diện tích tam giác ABC là: \(S = \frac{1}{2}bc\sin A = \frac{1}{2}.8.5\sin 120^\circ = 10\sqrt 3 \).
c) Theo định lí sin ta có \(R = \frac{a}{{2\sin A}} = \frac{{\sqrt {129} }}{{2\sin 120^\circ }} = \sqrt {43} \).
Đường cao AH của tam giác bằng \(\frac{{2S}}{a} = \frac{{2.10\sqrt 3 }}{{\sqrt {129} }} = \frac{{20\sqrt {43} }}{{43}}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có \(\frac{{\sin \alpha - \cos \alpha }}{{2\sin \alpha + 3\cos \alpha }} = \frac{{\frac{{\sin \alpha }}{{\cos \alpha }} - 1}}{{2\frac{{\sin \alpha }}{{\cos \alpha }} + 3}}\)\( = \frac{{\tan \alpha - 1}}{{2.\tan \alpha + 3}}\)\( = \frac{{ - 2 - 1}}{{2.\left( { - 2} \right) + 3}} = 3\).
b) Vì \(90^\circ < \alpha < 180^\circ \) nên \(\cos \alpha < 0\).
c) Có \({\cos ^2}\alpha = \frac{1}{{1 + {{\tan }^2}\alpha }} = \frac{1}{{1 + {{\left( { - 2} \right)}^2}}} = \frac{1}{5}\).
d) Có \(\sin \left( {180^\circ - \alpha } \right) = \sin \alpha \).
Có \({\sin ^2}\alpha = 1 - {\cos ^2}\alpha = 1 - \frac{1}{5} = \frac{4}{5} \Rightarrow \sin \alpha = \frac{{2\sqrt 5 }}{5}\) vì \(90^\circ < \alpha < 180^\circ \).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.
Lời giải
a) Do \(90^\circ < x < 180^\circ \) nên \(\cos x < 0\).
b) Ta có \({\cos ^2}x = 1 - {\sin ^2}x = 1 - \frac{{25}}{{169}} = \frac{{144}}{{169}}\).
Do đó \(P = 2{\sin ^2}x - {\cos ^2}x = 2.\left( {\frac{{25}}{{169}}} \right) - \frac{{144}}{{169}} = - \frac{{94}}{{169}}\).
c) Do \(\cos x < 0\) và \({\cos ^2}x = \frac{{144}}{{169}}\) nên \(\cos x = - \frac{{12}}{{13}}\).
Suy ra \(\tan x = \frac{{\sin x}}{{\cos x}} = - \frac{5}{{12}}\).
d) Ta có \(A = \frac{{{{\sin }^2}x}}{{1 + {{\cos }^2}x}} = \frac{{{{\sin }^2}x}}{{1 + 1 - {{\sin }^2}x}} = \frac{{{{\left( {\frac{5}{{13}}} \right)}^2}}}{{2 - {{\left( {\frac{5}{{13}}} \right)}^2}}} = \frac{{25}}{{313}}\).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Biết rằng điểm \(M\left( {a\,;\,b} \right)\) thoả mãn \[\widehat {MOx} = 30^\circ \] (hình vẽ minh hoạ). Khi đó giá trị của \(a\) bằng A. \(\frac{3}{5}\). B. \(\frac{1}{2}\). C. \(\frac{{\sqrt 3 }}{2}\). D. \(\frac{4}{5}\). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/2-1758597360.png)