Phần II. Trắc nghiệm đúng, sai
(Gồm 5 câu hỏi, hãy chọn đúng hoặc sai cho mỗi ý a), b), c), d))
Cho hình vẽ:
a) \(EF\;{\rm{//}}\;AC.\)
b) Tam giác \(ABC\) vuông tại \(A.\)
c) \(AB = 10\;{\rm{m}}{\rm{.}}\)
d) Diện tích tam giác \(ABC\) là \(54\;{{\rm{m}}^2}.\)
Phần II. Trắc nghiệm đúng, sai
(Gồm 5 câu hỏi, hãy chọn đúng hoặc sai cho mỗi ý a), b), c), d))
Cho hình vẽ:

a) \(EF\;{\rm{//}}\;AC.\)
b) Tam giác \(ABC\) vuông tại \(A.\)
c) \(AB = 10\;{\rm{m}}{\rm{.}}\)
d) Diện tích tam giác \(ABC\) là \(54\;{{\rm{m}}^2}.\)
Quảng cáo
Trả lời:
a) Đúng.
Vì \(\widehat C = \widehat {BFE},\) mà hai góc này ở vị trí đồng vị nên \(EF\;{\rm{//}}\;AC.\)
b) Đúng.
Vì \(EF\;{\rm{//}}\;AC,\) mà \(EF \bot AB\) nên \(AC \bot AB.\) Do đó, tam giác \(ABC\) vuông tại \(A.\)
c) Sai.
\(\Delta ABC\) có: \(EF\;{\rm{//}}\;AC\) nên theo định lí Thalès ta có: \(\frac{{BE}}{{AB}} = \frac{{BF}}{{BC}} = \frac{{BF}}{{BF + FC}}.\)
Do đó, \(AB = BE:\frac{{BF}}{{BF + FC}} = 3:\frac{5}{{5 + 10}} = 9\;\left( {\rm{m}} \right).\) Vậy \(AB = 9\;{\rm{m}}.\)
d) Đúng.
Diện tích \(\Delta ABC\) vuông tại \(A\) là: \(\frac{1}{2}AB \cdot AC = \frac{1}{2} \cdot 9 \cdot 12 = 54\;\left( {{{\rm{m}}^2}} \right).\)
Vậy diện tích tam giác \(ABC\) bằng \(54\;{{\rm{m}}^2}.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(120\)
Vì tam giác \(ABC\) có: \(FE\;{\rm{//}}\;AB\) nên theo định lí Thalès ta có: \(\frac{{AF}}{{FC}} = \frac{{BE}}{{EC}}.\)
Do đó, \(BE = \frac{{AF}}{{FC}} \cdot EC = \frac{{80}}{{40}} \cdot 60 = 120\;\left( {\rm{m}} \right).\)
Vậy khoảng cách giữa hai vị trí \(E\) và \(B\) bằng \(120\;{\rm{m}}{\rm{.}}\)
Lời giải
Đáp án: \(6\)

Lấy điểm \(F\) trên tia \(AM\) sao cho \(M\) là trung điểm của \(EF.\)
Tứ giác \(ECFB\) có: \(M\) là giao điểm của \(EF,\;CB.\) Mà \(M\) là trung điểm của \(EF,\) \(M\) là trung điểm của \(BC.\) Do đó, tứ giác \(ECFB\) là hình bình hành. Do đó, \(CF\;{\rm{//}}\;EB.\) Hay \(NE\;{\rm{//}}\;CF.\)
Vì \(EM = \frac{1}{3}EA,\;EM = \frac{1}{2}EF\) nên \(\frac{1}{3}AE = \frac{1}{2}EF\) suy ra \(\frac{{AE}}{{EF}} = \frac{3}{2}.\)
Tam giác \(ACF\) có: \(NE\;{\rm{//}}\;CF\) nên theo định lí Thalès ta có: \(\frac{{AN}}{{NC}} = \frac{{AE}}{{EF}} = \frac{3}{2}.\)
Do đó, \(\frac{{AN}}{{AC}} = \frac{3}{5}.\) Vậy \(AN = \frac{3}{5} \cdot 10 = 6\;\left( {{\rm{cm}}} \right).\)
Câu 3
A. \(\frac{{AD}}{{AB}} = \frac{{AE}}{{AC}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
