Câu hỏi:

22/09/2025 95 Lưu

Để đo khoảng cách giữa hai vị trí \(E\) và \(B\) ở hai bên bờ sông, người ta tiến hành chọn các vị trí \(A,\;F,\;C\) cùng nằm trên một bên bờ sông sao cho ba điểm \(C,\;E,\;B\) thẳng hàng, ba điểm \(A,\;F,\;C\) thẳng hàng và \(EF\;{\rm{//}}\;AB.\)  Người ta đo được \(AF = 80\;{\rm{m}},\;FC = 40\;{\rm{m}},\;CE = 60\;{\rm{m}}.\) Khoảng cách giữa hai vị trí \(E\) và \(B\) bằng bao nhiêu mét?

Khoảng cách giữa hai vị trí \(E\) và \(B\) bằng bao nhiêu mét? (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: \(120\)

Vì tam giác \(ABC\) có: \(FE\;{\rm{//}}\;AB\) nên theo định lí Thalès ta có: \(\frac{{AF}}{{FC}} = \frac{{BE}}{{EC}}.\)

Do đó, \(BE = \frac{{AF}}{{FC}} \cdot EC = \frac{{80}}{{40}} \cdot 60 = 120\;\left( {\rm{m}} \right).\)

Vậy khoảng cách giữa hai vị trí \(E\) và \(B\) bằng \(120\;{\rm{m}}{\rm{.}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(6\)

Cho tam giác \(ABC\) có \(AC = 10\;{\rm{cm}}\) và điểm \(M\) là trung điểm của \(BC.\) Lấy điểm \(E\) thuộc \(AM\) sao cho \(EM = \frac{1}{3}EA.\) Tia \(BE\) cắt \(AC\) tại \(N.\) Tính độ dài đoạn thẳng \(AN.\) (Đơn vị: \({\rm{cm}}\)). (ảnh 1)

Lấy điểm \(F\) trên tia \(AM\) sao cho \(M\) là trung điểm của \(EF.\)

Tứ giác \(ECFB\) có: \(M\) là giao điểm của \(EF,\;CB.\) Mà \(M\) là trung điểm của \(EF,\) \(M\) là trung điểm của \(BC.\) Do đó, tứ giác \(ECFB\) là hình bình hành. Do đó, \(CF\;{\rm{//}}\;EB.\) Hay \(NE\;{\rm{//}}\;CF.\)

Vì \(EM = \frac{1}{3}EA,\;EM = \frac{1}{2}EF\) nên \(\frac{1}{3}AE = \frac{1}{2}EF\) suy ra \(\frac{{AE}}{{EF}} = \frac{3}{2}.\)

Tam giác \(ACF\) có: \(NE\;{\rm{//}}\;CF\) nên theo định lí Thalès ta có: \(\frac{{AN}}{{NC}} = \frac{{AE}}{{EF}} = \frac{3}{2}.\)

Do đó, \(\frac{{AN}}{{AC}} = \frac{3}{5}.\) Vậy \(AN = \frac{3}{5} \cdot 10 = 6\;\left( {{\rm{cm}}} \right).\)

Câu 2

A. \(\frac{{AD}}{{AB}} = \frac{{AE}}{{AC}}.\)

B. \(\frac{{AD}}{{AC}} = \frac{{AE}}{{AB}}.\)  
C. \(\frac{{AD}}{{AB}} = \frac{{AC}}{{AE}}.\)  
D. Cả A, B, C đúng.

Lời giải

Đáp án đúng là: A

Cho \(\Delta ABC.\) Lấy điểm \(D\) thuộc cạnh \(AB,\) điểm \(E\) thuộc cạnh \(AC.\) Để \(DE\;{\rm{//}}\;BC\) thì: (ảnh 1)

\(\Delta ABC\) có: \(\frac{{AD}}{{AB}} = \frac{{AE}}{{AC}}\) thì \(DE\;{\rm{//}}\;BC\) (định lí Thalès đảo).