Cho tam giác \(ABC\) có \(BC = 18\;{\rm{cm}}{\rm{.}}\) Gọi \(D\) là trung điểm của \(BC\) và \(G\) là trọng tâm của tam giác \(ABC.\) Qua \(G\) kẻ đường thẳng song song với \(AB\) cắt \(BC\) tại \(M.\) Tính độ dài đoạn thẳng \(MD.\) (Đơn vị: \({\rm{cm}}\)).
Quảng cáo
Trả lời:
Đáp án: \(3\)

Vì \(D\) là trung điểm của \(BC\) nên \(BD = \frac{1}{2}BC = \frac{1}{2} \cdot 18 = 9\;\left( {{\rm{cm}}} \right).\)
Vì \(AD\) là trung tuyến của tam giác \(ABC\) và \(G\) là trọng tâm của tam giác \(ABC\) nên \(\frac{{GD}}{{AD}} = \frac{1}{3}.\)
Tam giác \(ADB\) có \(MG\;{\rm{//}}\;AB\) nên theo định lí Thalès ta có: \(\frac{{MD}}{{BD}} = \frac{{GD}}{{AD}} = \frac{1}{3}.\)
Do đó, \(MD = \frac{1}{3}BD = \frac{1}{3} \cdot 9 = 3\;\left( {{\rm{cm}}} \right).\) Vậy \(MD = 3\;{\rm{cm}}.\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(120\)
Vì tam giác \(ABC\) có: \(FE\;{\rm{//}}\;AB\) nên theo định lí Thalès ta có: \(\frac{{AF}}{{FC}} = \frac{{BE}}{{EC}}.\)
Do đó, \(BE = \frac{{AF}}{{FC}} \cdot EC = \frac{{80}}{{40}} \cdot 60 = 120\;\left( {\rm{m}} \right).\)
Vậy khoảng cách giữa hai vị trí \(E\) và \(B\) bằng \(120\;{\rm{m}}{\rm{.}}\)
Lời giải
a) Đúng.
Vì tứ giác \(ABCD\) là hình bình hành nên \(AB\;{\rm{//}}\;CD,\;AB = CD.\)
Vì \(M,\;N\) lần lượt là trung điểm của \(AB\) và \(CD\) nên \(AM = MB = \frac{1}{2}AB,\;DN = NC = \frac{1}{2}DC.\)
Do đó, \(AM = MB = DN = NC.\)
Tứ giác \(AMCN\) có: \(AM = CN,\;AM\;{\rm{//}}\;CN\) nên tứ giác \(AMCN\) là hình bình hành.
b) Đúng.
Vì tứ giác \(AMCN\) là hình bình hành nên \(AN\;{\rm{//}}\;CM.\)
Tam giác \(APB\) có: \(AP\;{\rm{//}}\;QM\) nên theo định lí Thalès ta có: \(\frac{{BM}}{{MA}} = \frac{{BQ}}{{QP}}.\)
c) Đúng.
Tam giác \(DQC\) có: \(PN\;{\rm{//}}\;CQ\) nên theo định lí Thalès ta có: \(\frac{{DN}}{{NC}} = \frac{{DP}}{{PQ}}.\)
Mà \(DN = NC\) nên \(\frac{{DP}}{{PQ}} = 1\) hay \(DP = PQ.\) Do đó, \(P\) là trung điểm của \(DQ.\)
d) Sai.
Vì \(\frac{{BM}}{{MA}} = \frac{{BQ}}{{QP}},\) mà \(MA = MB\) nên \(\frac{{BQ}}{{PQ}} = 1\) hay \(PQ = QB.\)
Ta có: \(PQ = QB,\;DP = PQ\) nên \(PQ = QB = DP.\)
Mà \(PQ + QB + DP = BD\) nên \(DP = \frac{1}{3}BD.\)
Câu 3
A. \(\frac{{AD}}{{AB}} = \frac{{AE}}{{AC}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
