Câu hỏi:

22/09/2025 42 Lưu

Cho tam giác \(ABC\) có \(BC = 18\;{\rm{cm}}{\rm{.}}\)  Gọi \(D\) là trung điểm của \(BC\) và \(G\) là trọng tâm của tam giác \(ABC.\) Qua \(G\) kẻ đường thẳng song song với \(AB\) cắt \(BC\) tại \(M.\) Tính độ dài đoạn thẳng \(MD.\) (Đơn vị: \({\rm{cm}}\)).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: \(3\)

Tính độ dài đoạn thẳng \(MD.\) (Đơn vị: \({\rm{cm}}\)). (ảnh 1)

Vì \(D\) là trung điểm của \(BC\) nên \(BD = \frac{1}{2}BC = \frac{1}{2} \cdot 18 = 9\;\left( {{\rm{cm}}} \right).\)

Vì \(AD\) là trung tuyến của tam giác \(ABC\) và \(G\) là trọng tâm của tam giác \(ABC\) nên \(\frac{{GD}}{{AD}} = \frac{1}{3}.\)

Tam giác \(ADB\) có \(MG\;{\rm{//}}\;AB\) nên theo định lí Thalès ta có: \(\frac{{MD}}{{BD}} = \frac{{GD}}{{AD}} = \frac{1}{3}.\)

Do đó, \(MD = \frac{1}{3}BD = \frac{1}{3} \cdot 9 = 3\;\left( {{\rm{cm}}} \right).\) Vậy \(MD = 3\;{\rm{cm}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Tứ giác \(AEDF\) là hình bình hành.  b) \(\frac{{AE}}{{AB}} = \frac{{CD}}{{BC}}.\)  c) \(\frac{{ED}}{{AC}} = \frac{{BD}}{{BC}}.\)  d) \(\frac{{DF}}{{AB}} + \frac{{ED}}{{AC}} = 2.\) (ảnh 1)

a) Đúng.

Tứ giác \(AEDF\) có: \(AF\;{\rm{//}}\;ED,\;AE\;{\rm{//}}\;DF\) nên tứ giác \(AEDF\) là hình bình hành.

b) Đúng.

\(\Delta ABC\) có: \(AC\;{\rm{//}}\;ED\) nên theo định lí Thalès ta có: \(\frac{{AE}}{{AB}} = \frac{{CD}}{{BC}}.\)

c) Đúng.

\(\Delta ABC\) có: \(AB\;{\rm{//}}\;DF\) nên theo định lí Thalès ta có: \(\frac{{AF}}{{AC}} = \frac{{BD}}{{BC}}.\)

\(ED = AF\) (do tứ giác \(AEDF\) là hình bình hành) nên \(\frac{{ED}}{{AC}} = \frac{{BD}}{{BC}}.\)

d) Sai.

tứ giác \(AEDF\) là hình bình hành nên \(AE = DF.\) \(\frac{{AE}}{{AB}} = \frac{{CD}}{{BC}}\;\left( {cmt} \right)\) nên \(\frac{{DF}}{{AB}} = \frac{{CD}}{{BC}}.\)

Do đó, \(\frac{{DF}}{{AB}} + \frac{{ED}}{{AC}} = \frac{{CD}}{{BC}} + \frac{{BD}}{{BC}} = \frac{{CD + BD}}{{BC}} = \frac{{BC}}{{BC}} = 1.\) Vậy \(\frac{{DF}}{{AB}} + \frac{{ED}}{{AC}} = 1.\)

Câu 2

A. \(\frac{{EC}}{{AE}} = \frac{1}{4}.\)  
B. \(\frac{{EC}}{{AE}} = \frac{1}{2}.\)    
C. \(\frac{{EC}}{{AE}} = \frac{2}{3}.\)  
D. \(\frac{{EC}}{{AE}} = \frac{1}{3}.\)

Lời giải

Đáp án đúng là: D

Cho \(\Delta ABC\) và điểm \(D\) trên cạnh \(AB\) sao cho \(\frac{{AD}}{{AB}} = \frac{3}{4}.\) Qua \(D\) kẻ đường thẳng song song với \(BC\) cắt \(AC\) tại \(E.\) Khi đó:  (ảnh 1)

\(\Delta ABC\) có: \(DE\;{\rm{//}}\;BC\) nên theo định lí Thalès ta có: \(\frac{{AE}}{{AC}} = \frac{{AD}}{{AB}} = \frac{3}{4}.\) Do đó, \(\frac{{AC}}{{AE}} = \frac{4}{3}.\)

Suy ra: \(\frac{{AC - AE}}{{AE}} = \frac{{4 - 3}}{3} = \frac{1}{3}.\) Vậy \(\frac{{EC}}{{AE}} = \frac{1}{3}.\)

Câu 5

A. \(\frac{{AD}}{{AB}} = \frac{{AE}}{{AC}}.\)

B. \(\frac{{AD}}{{AC}} = \frac{{AE}}{{AB}}.\)  
C. \(\frac{{AD}}{{AB}} = \frac{{AC}}{{AE}}.\)  
D. Cả A, B, C đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP