Cho \(\Delta ABC.\) Lấy điểm \(D\) bất kì trên cạnh \(BC.\) Qua \(D\) kẻ đường thẳng song song với \(AB\) cắt \(AC\) tại \(F.\) Qua \(D\) kẻ đường thẳng song song với \(AC\) cắt \(AB\) tại \(E.\)
a) Tứ giác \(AEDF\) là hình bình hành.
b) \(\frac{{AE}}{{AB}} = \frac{{CD}}{{BC}}.\)
c) \(\frac{{ED}}{{AC}} = \frac{{BD}}{{BC}}.\)
d) \(\frac{{DF}}{{AB}} + \frac{{ED}}{{AC}} = 2.\)
Cho \(\Delta ABC.\) Lấy điểm \(D\) bất kì trên cạnh \(BC.\) Qua \(D\) kẻ đường thẳng song song với \(AB\) cắt \(AC\) tại \(F.\) Qua \(D\) kẻ đường thẳng song song với \(AC\) cắt \(AB\) tại \(E.\)
a) Tứ giác \(AEDF\) là hình bình hành.
b) \(\frac{{AE}}{{AB}} = \frac{{CD}}{{BC}}.\)
c) \(\frac{{ED}}{{AC}} = \frac{{BD}}{{BC}}.\)
d) \(\frac{{DF}}{{AB}} + \frac{{ED}}{{AC}} = 2.\)
Quảng cáo
Trả lời:
a) Đúng.
Tứ giác \(AEDF\) có: \(AF\;{\rm{//}}\;ED,\;AE\;{\rm{//}}\;DF\) nên tứ giác \(AEDF\) là hình bình hành.
b) Đúng.
\(\Delta ABC\) có: \(AC\;{\rm{//}}\;ED\) nên theo định lí Thalès ta có: \(\frac{{AE}}{{AB}} = \frac{{CD}}{{BC}}.\)
c) Đúng.
\(\Delta ABC\) có: \(AB\;{\rm{//}}\;DF\) nên theo định lí Thalès ta có: \(\frac{{AF}}{{AC}} = \frac{{BD}}{{BC}}.\)
Mà \(ED = AF\) (do tứ giác \(AEDF\) là hình bình hành) nên \(\frac{{ED}}{{AC}} = \frac{{BD}}{{BC}}.\)
d) Sai.
Vì tứ giác \(AEDF\) là hình bình hành nên \(AE = DF.\) Mà \(\frac{{AE}}{{AB}} = \frac{{CD}}{{BC}}\;\left( {cmt} \right)\) nên \(\frac{{DF}}{{AB}} = \frac{{CD}}{{BC}}.\)
Do đó, \(\frac{{DF}}{{AB}} + \frac{{ED}}{{AC}} = \frac{{CD}}{{BC}} + \frac{{BD}}{{BC}} = \frac{{CD + BD}}{{BC}} = \frac{{BC}}{{BC}} = 1.\) Vậy \(\frac{{DF}}{{AB}} + \frac{{ED}}{{AC}} = 1.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(120\)
Vì tam giác \(ABC\) có: \(FE\;{\rm{//}}\;AB\) nên theo định lí Thalès ta có: \(\frac{{AF}}{{FC}} = \frac{{BE}}{{EC}}.\)
Do đó, \(BE = \frac{{AF}}{{FC}} \cdot EC = \frac{{80}}{{40}} \cdot 60 = 120\;\left( {\rm{m}} \right).\)
Vậy khoảng cách giữa hai vị trí \(E\) và \(B\) bằng \(120\;{\rm{m}}{\rm{.}}\)
Lời giải
Đáp án: \(6\)

Lấy điểm \(F\) trên tia \(AM\) sao cho \(M\) là trung điểm của \(EF.\)
Tứ giác \(ECFB\) có: \(M\) là giao điểm của \(EF,\;CB.\) Mà \(M\) là trung điểm của \(EF,\) \(M\) là trung điểm của \(BC.\) Do đó, tứ giác \(ECFB\) là hình bình hành. Do đó, \(CF\;{\rm{//}}\;EB.\) Hay \(NE\;{\rm{//}}\;CF.\)
Vì \(EM = \frac{1}{3}EA,\;EM = \frac{1}{2}EF\) nên \(\frac{1}{3}AE = \frac{1}{2}EF\) suy ra \(\frac{{AE}}{{EF}} = \frac{3}{2}.\)
Tam giác \(ACF\) có: \(NE\;{\rm{//}}\;CF\) nên theo định lí Thalès ta có: \(\frac{{AN}}{{NC}} = \frac{{AE}}{{EF}} = \frac{3}{2}.\)
Do đó, \(\frac{{AN}}{{AC}} = \frac{3}{5}.\) Vậy \(AN = \frac{3}{5} \cdot 10 = 6\;\left( {{\rm{cm}}} \right).\)
Câu 3
A. \(\frac{{AD}}{{AB}} = \frac{{AE}}{{AC}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
