Cho \(\Delta ABC.\) Lấy điểm \(D\) bất kì trên cạnh \(BC.\) Qua \(D\) kẻ đường thẳng song song với \(AB\) cắt \(AC\) tại \(F.\) Qua \(D\) kẻ đường thẳng song song với \(AC\) cắt \(AB\) tại \(E.\)
a) Tứ giác \(AEDF\) là hình bình hành.
b) \(\frac{{AE}}{{AB}} = \frac{{CD}}{{BC}}.\)
c) \(\frac{{ED}}{{AC}} = \frac{{BD}}{{BC}}.\)
d) \(\frac{{DF}}{{AB}} + \frac{{ED}}{{AC}} = 2.\)
Cho \(\Delta ABC.\) Lấy điểm \(D\) bất kì trên cạnh \(BC.\) Qua \(D\) kẻ đường thẳng song song với \(AB\) cắt \(AC\) tại \(F.\) Qua \(D\) kẻ đường thẳng song song với \(AC\) cắt \(AB\) tại \(E.\)
a) Tứ giác \(AEDF\) là hình bình hành.
b) \(\frac{{AE}}{{AB}} = \frac{{CD}}{{BC}}.\)
c) \(\frac{{ED}}{{AC}} = \frac{{BD}}{{BC}}.\)
d) \(\frac{{DF}}{{AB}} + \frac{{ED}}{{AC}} = 2.\)
Quảng cáo
Trả lời:


a) Đúng.
Tứ giác \(AEDF\) có: \(AF\;{\rm{//}}\;ED,\;AE\;{\rm{//}}\;DF\) nên tứ giác \(AEDF\) là hình bình hành.
b) Đúng.
\(\Delta ABC\) có: \(AC\;{\rm{//}}\;ED\) nên theo định lí Thalès ta có: \(\frac{{AE}}{{AB}} = \frac{{CD}}{{BC}}.\)
c) Đúng.
\(\Delta ABC\) có: \(AB\;{\rm{//}}\;DF\) nên theo định lí Thalès ta có: \(\frac{{AF}}{{AC}} = \frac{{BD}}{{BC}}.\)
Mà \(ED = AF\) (do tứ giác \(AEDF\) là hình bình hành) nên \(\frac{{ED}}{{AC}} = \frac{{BD}}{{BC}}.\)
d) Sai.
Vì tứ giác \(AEDF\) là hình bình hành nên \(AE = DF.\) Mà \(\frac{{AE}}{{AB}} = \frac{{CD}}{{BC}}\;\left( {cmt} \right)\) nên \(\frac{{DF}}{{AB}} = \frac{{CD}}{{BC}}.\)
Do đó, \(\frac{{DF}}{{AB}} + \frac{{ED}}{{AC}} = \frac{{CD}}{{BC}} + \frac{{BD}}{{BC}} = \frac{{CD + BD}}{{BC}} = \frac{{BC}}{{BC}} = 1.\) Vậy \(\frac{{DF}}{{AB}} + \frac{{ED}}{{AC}} = 1.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(3\)

Vì \(D\) là trung điểm của \(BC\) nên \(BD = \frac{1}{2}BC = \frac{1}{2} \cdot 18 = 9\;\left( {{\rm{cm}}} \right).\)
Vì \(AD\) là trung tuyến của tam giác \(ABC\) và \(G\) là trọng tâm của tam giác \(ABC\) nên \(\frac{{GD}}{{AD}} = \frac{1}{3}.\)
Tam giác \(ADB\) có \(MG\;{\rm{//}}\;AB\) nên theo định lí Thalès ta có: \(\frac{{MD}}{{BD}} = \frac{{GD}}{{AD}} = \frac{1}{3}.\)
Do đó, \(MD = \frac{1}{3}BD = \frac{1}{3} \cdot 9 = 3\;\left( {{\rm{cm}}} \right).\) Vậy \(MD = 3\;{\rm{cm}}.\)
Câu 2
Lời giải
Đáp án đúng là: D

\(\Delta ABC\) có: \(DE\;{\rm{//}}\;BC\) nên theo định lí Thalès ta có: \(\frac{{AE}}{{AC}} = \frac{{AD}}{{AB}} = \frac{3}{4}.\) Do đó, \(\frac{{AC}}{{AE}} = \frac{4}{3}.\)
Suy ra: \(\frac{{AC - AE}}{{AE}} = \frac{{4 - 3}}{3} = \frac{1}{3}.\) Vậy \(\frac{{EC}}{{AE}} = \frac{1}{3}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\frac{{AD}}{{AB}} = \frac{{AE}}{{AC}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.