Câu hỏi:

19/09/2025 39 Lưu

Cho \(\Delta ABC\) vuông tại \(A\) có \(AB = 5\;{\rm{cm}}{\rm{,}}\;AC = 12\;{\rm{cm}}{\rm{.}}\) Gọi \(AD\) là đường cao của \(\Delta ABC.\)

a) \(BC = 13\;{\rm{cm}}{\rm{.}}\)

b) Diện tích \(\Delta ABC\) bằng \(60\;{\rm{c}}{{\rm{m}}^2}.\)

c) \(AD = 4,5\;{\rm{cm}}{\rm{.}}\)

d) \(\widehat B > \widehat {DAB}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho \(\Delta ABC\) vuông tại \(A\) có \(AB = 5\;{\rm{cm}}{\rm{,}}\;AC = 12\;{\rm{cm}}{\rm{.}}\) Gọi \(AD\) là đường cao của \(\Delta ABC.\)  a) \(BC = 13\;{\rm{cm}}{\rm{.}}\)  b) Diện tích \(\Delta ABC\) bằng \(60\;{\rm{c}}{{\rm{m}}^2}.\) (ảnh 1)

a) Đúng.

Vì tam giác \(ABC\) vuông tại \(A\) nên theo định lí Pythagore ta có:

\(B{C^2} = A{B^2} + A{C^2} = {5^2} + {12^2} = 169\) nên \(BC = \sqrt {169}  = 13\;\left( {{\rm{cm}}} \right).\)

Vậy \(BC = 13\;{\rm{cm}}{\rm{.}}\)

b) Sai.

Diện tích \(\Delta ABC\) vuông tại \(A\) là: \(S = \frac{1}{2}AB \cdot AC = \frac{1}{2} \cdot 5 \cdot 12 = 30\;\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)

Vậy diện tích \(\Delta ABC\) bằng \(30\;{\rm{c}}{{\rm{m}}^2}.\)

c) Sai.

Vì \(AD\) là đường cao của \(\Delta ABC\) nên diện tích \(\Delta ABC\) là: \(S = \frac{1}{2}AD \cdot BC.\)

Do đó, \(\frac{1}{2} \cdot AD \cdot 13 = 30,\) suy ra \(AD = \frac{{60}}{{13}}\;{\rm{cm}}{\rm{.}}\) Vậy \(AD = \frac{{60}}{{13}}\;{\rm{cm}}{\rm{.}}\)

d) Đúng.  

Vì \(\Delta ABD\) vuông tại \(D\) nên theo định lí Pythagore ta có: \(B{D^2} + A{D^2} = A{B^2}\) nên \(B{D^2} + {\left( {\frac{{60}}{{13}}} \right)^2} = {5^2},\) hay \(B{D^2} = \frac{{625}}{{169}},\) suy ra \[BD = \sqrt {\frac{{625}}{{169}}}  = \frac{{25}}{{13}}\;\left( {{\rm{cm}}} \right).\]

\(\Delta ABD\) có: \(BD < AD\;\left( {{\rm{Do}}\;\;\frac{{25}}{{13}} < \frac{{60}}{{13}}} \right)\) nên \(\widehat B > \widehat {DAB}.\) Vậy \(\widehat B > \widehat {DAB}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\widehat N = 30^\circ .\)  

B. \(\widehat N = 40^\circ .\)  
C. \(\widehat N = 45^\circ .\)    
D. \(\widehat N = 50^\circ .\)

Lời giải

Đáp án đúng là: C

Vì \(\Delta MNP\) vuông tại \(M\) nên \(M{N^2} + M{P^2} = N{P^2}\) (định lí Pythagore).

Suy ra \(M{P^2} = N{P^2} - M{N^2} = {\left( {\sqrt {32} } \right)^2} - {4^2} = 16,\) do đó \(MP = \sqrt {16}  = 4\;\left( {{\rm{cm}}} \right).\)

Vì \(\Delta MNP\) vuông tại \(M\) và \(MP = MN\left( { = 4\;{\rm{cm}}} \right)\) nên \(\Delta MNP\) vuông cân tại \(M.\) Vậy \(\widehat N = 45^\circ .\)

Lời giải

Khoảng cách giữa hai điểm   và   trong hình vẽ bằng bao nhiêu mét? (Làm tròn kết quả đến hàng phần mười). (ảnh 2)

Vẽ \(\Delta ABC\) như trong hình vẽ trên. Ta có: \(AC = 10\;{\rm{m}}{\rm{,}}\;BC = 40 - 30 = 10\;{\rm{m}}{\rm{.}}\)

Áp dụng định lí Pythagore vào \(\Delta ABC\) vuông tại \(C\) ta có:

\(A{B^2} = A{C^2} + B{C^2} = {10^2} + {10^2} = 200\)  nên \(AB = \sqrt {200}  \approx 14,1\;\left( {\rm{m}} \right).\)

Vậy khoảng cách giữa hai điểm \(A\) và \(B\) trong hình vẽ bằng khoảng \(14,1\;{\rm{m}}{\rm{.}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\widehat A = 90^\circ .\)
B. \(\widehat A = 80^\circ .\) 
C. \(\widehat A = 100^\circ .\)    
D. \(\widehat A = 110^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP