Câu hỏi:

19/09/2025 12 Lưu

Phần III. Trắc nghiệm trả lời ngắn

(Gồm 5 câu hỏi, hãy viết câu trả lời/đáp án vào bài làm mà không cần trình bày lời giải chi tiết)

Cho \(\Delta ABC\) vuông tại \(A\)\(BC = 52\;{\rm{cm}}{\rm{,}}\;\frac{{AB}}{{AC}} = \frac{5}{{12}}.\) Chu vi của \(\Delta ABC\) bằng bao nhiêu \({\rm{cm?}}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: \(120\)

Vì \(\frac{{AB}}{{AC}} = \frac{5}{{12}}\) nên \(AB = \frac{5}{{12}}AC.\)

Vì \(\Delta ABC\) vuông tại \(A\) nên: \(B{C^2} = A{B^2} + A{C^2}\) (định lí Pythagore), suy ra \({52^2} = A{C^2} + {\left( {\frac{5}{{12}}AC} \right)^2},\) suy ra \(A{C^2} = 2\;304\) nên \(AC = \sqrt {2\;304}  = 48\;\left( {{\rm{cm}}} \right).\) Do đó, \(AB = \frac{5}{{12}} \cdot 48 = 20\;\left( {{\rm{cm}}} \right).\)

Chu vi \(\Delta ABC\) là: \(AB + AC + BC = 20 + 48 + 52 = 120\;\left( {{\rm{cm}}} \right).\)

Vậy chu vi của \(\Delta ABC\) bằng \(120\;{\rm{cm}}{\rm{.}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho \(\Delta ABC\) vuông tại \(A\) có chu vi bằng \(48\;{\rm{cm}}\) và \(\frac{{AB}}{{AC}} = \frac{3}{4}.\)

a) \(\frac{{BC}}{5} = \frac{{AB}}{4}.\)

b) \(\frac{{AB}}{4} = \frac{{AC}}{3} = \frac{{BC}}{5} = 2.\)

c) \(BC = 20\;{\rm{cm}}{\rm{.}}\)

d) Diện tích \(\Delta ABC\) bằng \(96\;{\rm{c}}{{\rm{m}}^{\rm{2}}}.\)

Lời giải

a) Sai.

Vì \(\frac{{AB}}{{AC}} = \frac{3}{4}\) nên \(AC = \frac{4}{3}AB.\)

Vì \(\Delta ABC\) vuông tại \(A\) nên theo định lí Pythagore ta có:

\(B{C^2} = A{B^2} + A{C^2} = A{B^2} + {\left( {\frac{4}{3}AB} \right)^2} = \frac{{25}}{9}A{B^2}\) nên \(BC = \frac{5}{3}AB,\) suy ra \(\frac{{BC}}{5} = \frac{{AB}}{3}.\)

b) Sai.

Vì \(\frac{{AB}}{{AC}} = \frac{3}{4}\) nên \(\frac{{AB}}{3} = \frac{{AC}}{4},\)mà \(\frac{{BC}}{5} = \frac{{AB}}{3}\) nên \(\frac{{AB}}{3} = \frac{{AC}}{4} = \frac{{BC}}{5}.\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: \(\frac{{AB}}{3} = \frac{{AC}}{4} = \frac{{BC}}{5} = \frac{{AB + AC + BC}}{{3 + 4 + 5}} = \frac{{48}}{{12}} = 4.\)

Vậy \(\frac{{AB}}{3} = \frac{{AC}}{4} = \frac{{BC}}{5} = 4.\)

c) Đúng.

Ta có: \(BC = 5 \cdot 4 = 20\;\left( {{\rm{cm}}} \right).\) Vậy \(BC = 20\;{\rm{cm}}{\rm{.}}\)

d) Đúng.

Ta có: \(AB = 3 \cdot 4 = 12\;\left( {{\rm{cm}}} \right)\) và \(AC = 4 \cdot 4 = 16\;\left( {{\rm{cm}}} \right).\)

Diện tích \(\Delta ABC\) vuông tại \(A\) là: \(S = \frac{1}{2}AB \cdot AC = \frac{1}{2} \cdot 12 \cdot 16 = 96\;\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)

Vậy diện tích \(\Delta ABC\) bằng \(96\;{\rm{c}}{{\rm{m}}^{\rm{2}}}.\)

Lời giải

Đáp án: \(16\)

Áp dụng định lý Pythagore vào \(\Delta ABD\) vuông tại \(A\) ta có:

\(B{D^2} = A{B^2} + A{D^2} = {5^2} + {15^2} = 250\) nên \(BD = \sqrt {250}  \approx 16\;{\rm{km}}{\rm{.}}\)

Vậy khoảng cách từ vị trí máy bay đến vị trí \(D\) của sân bay  là khoảng \(16\;{\rm{km}}{\rm{.}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP