(0,5 điểm) Cho tam giác đều \(ABC\) có cạnh bằng \(20{\rm{\;cm}}\). Người ta cắt ở ba góc của tấm nhôm đó ba tam giác (hình vẽ) để được hình chữ nhật \(MNPQ.\) Tìm độ dài đoạn \(MB\) để hình chữ nhật \(MNPQ\) có diện tích lớn nhất.

(0,5 điểm) Cho tam giác đều \(ABC\) có cạnh bằng \(20{\rm{\;cm}}\). Người ta cắt ở ba góc của tấm nhôm đó ba tam giác (hình vẽ) để được hình chữ nhật \(MNPQ.\) Tìm độ dài đoạn \(MB\) để hình chữ nhật \(MNPQ\) có diện tích lớn nhất.

Quảng cáo
Trả lời:
Hướng dẫn giải
⦁ Vì \(ABC\) là tam giác đều cạnh \(20{\rm{\;cm}}\) nên \(BC = 20{\rm{\;cm}}\) và \(\widehat {B\,} = 60^\circ .\)
Giả sử \(MB = x\,\,\left( {x > 0} \right){\rm{\;(cm)}}{\rm{.}}\) Khi đó \[QC = x{\rm{\;(cm)}}\] và \(MQ = BC - BM - QC = 20 - 2x{\rm{\;(cm)}}{\rm{.}}\)
Xét \(\Delta MNB\) vuông tại \(M,\) ta có: \(MN = MB \cdot \tan B = x\tan 60^\circ = x\sqrt 3 {\rm{\;(cm)}}{\rm{.}}\)
Diện tích hình chữ nhật \(MNPQ\) là: \(S\left( x \right) = \left( {20 - 2x} \right) \cdot x\sqrt 3 = 2\sqrt 3 \cdot x\left( {10 - x} \right){\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Để diện tích hình chữ nhật \(MNPQ\) lớn nhất thì ta tìm giá trị lớn nhất của biểu thức \(S\left( x \right)\).
⦁ Chứng minh bất đẳng thức: \(ab \le {\left( {\frac{{a + b}}{2}} \right)^2}\,\,\,\,\left( * \right)\) với \(a,\,\,b\) là các số không âm.
Thật vậy, xét hiệu \({\left( {\frac{{a + b}}{2}} \right)^2} - ab = \frac{{{a^2} + 2ab + {b^2} - 4ab}}{4} = \frac{{{a^2} - 2ab + {b^2}}}{4} = \frac{{{{\left( {a - b} \right)}^2}}}{2}\)
Với mọi \(a,\,\,b\) là các số không âm, ta có:
\({\left( {a - b} \right)^2} \ge 0\) nên \(\frac{{{{\left( {a - b} \right)}^2}}}{2} \ge 0\) suy ra \({\left( {\frac{{a + b}}{2}} \right)^2} \ge ab\).
Dấu “=” xảy ra khi và chỉ khi \(a = b.\) Như vậy bất đẳng thức \(\left( * \right)\) đã được chứng minh.
⦁ Áp dụng bất đẳng thức \(\left( * \right)\) cho biểu thức \(S\left( x \right) = 2\sqrt 3 \cdot x\left( {10 - x} \right),\) ta được:
\[S\left( x \right) = 2\sqrt 3 \cdot x\left( {10 - x} \right) \le 2\sqrt 3 \cdot {\left( {\frac{{x + 10 - x}}{2}} \right)^2} = 50\sqrt 3 \].
Dấu “=” xảy ra khi và chỉ khi \[x = 10 - x\] hay \[x = 5\].
Vậy \(MB = 5{\rm{\;cm}}\) thì hình chữ nhật \(MNPQ\) có diện tích lớn nhất.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án: 4.
Điều kiện xác định: \(x \ne 2,\,\,\,x \ne - 2.\)
\(\frac{{x + 2}}{{x - 2}} - \frac{{x - 2}}{{2 + x}} = \frac{{{x^2} + 16}}{{{x^2} - 4}}\)
\(\frac{{{{\left( {x + 2} \right)}^2}}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} - \frac{{{{\left( {x - 2} \right)}^2}}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{{{x^2} + 16}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\)
\({\left( {x + 2} \right)^2} - {\left( {x - 2} \right)^2} = {x^2} + 16\)
\({x^2} + 4x + 4 - \left( {{x^2} - 4x + 4} \right) = {x^2} + 16\)
\({x^2} + 4x + 4 - {x^2} + 4x - 4 = {x^2} + 16\)
\({x^2} - 8x + 16 = 0\)
\({\left( {x - 4} \right)^2} = 0\)
\(x - 4 = 0\)
\(x = 4\) (thỏa mãn).
Vậy nghiệm của phương trình đã cho là \(x = 4\).
Lời giải
Hướng dẫn giải
Theo bài, hiệu giữa nucleotide loại T với loại nucleotide không bổ sung với nó là \(300\) nucleotide nên ta có phương trình: \(T - G = 300\). (1)
Theo nguyên tắc bổ sung: “\[A\] liên kết với \[T\] bằng 2 liên kết hydrogen và \[G\] liên kết với \[C\] bằng 3 liên kết hydrogen” và theo bài, gen B có \(3\,\,600\) liên kết hydrogen nên ta có phương trình \(2T + 3G = 3\,\,600\). (2)
Từ phương trình (1) và phương trình (2), ta có hệ phương trình: \(\left\{ \begin{array}{l}T - G = 300\\2T + 3G = 3\,\,600\end{array} \right.\)
Nhân hai vế của phương trình thứ nhất với 3, ta được hệ \(\left\{ \begin{array}{l}3T - 3G = 900\\2T + 3G = 3\,\,600\end{array} \right.\)
Cộng từng vế hai phương trình của hệ ta được: \(5T = 4\,500,\) suy ra \(T = 900\).
Thay \(T = 900\) vào phương trình \(T - G = 300\), ta được: \(900 - G = 300,\) suy ra \(G = 600.\)
Vậy số nucleotide từng loại gen B là: \(G = C = 600\) và \(A = T = 900\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
