Phương trình \(\left( {\frac{2}{3}x + 6} \right)\left( {8 - 2x} \right) = 0\) có nghiệm là
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Ta có: \(\left( {\frac{2}{3}x + 6} \right)\left( {8 - 2x} \right) = 0\)
\(\frac{2}{3}x + 6 = 0\) hoặc \(8 - 2x = 0\)
\(\frac{2}{3}x = - 6\) hoặc \(2x = 8\)
\(x = - 9\) hoặc \(x = 4\)
Vậy phương trình đã cho có hai nghiệm là \(x = - 9\,;\) \(x = 4\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án: 14.
Ta có \[3 < \frac{{2x - 2}}{8}\]
\[2x - 2 > 24\]
\[2x > 26\]
\[x > 26:2\]
\[x > 13.\]
Do đó, bất phương trình có nghiệm \[x > 13.\]
Vậy số tự nhiên nhỏ nhất của \(x\) thỏa mãn bất phương trình đã cho là \[x = 14.\]
Lời giải
Hướng dẫn giải
Đáp án: a) Đúng. b) Sai. c) Sai. d) Đúng.
a) Đúng. Thay \(x = 5\) và \(y = - 1\) vào phương trình đã cho, ta được: \[5 + 2 \cdot \left( { - 1} \right) = 3.\]
Suy ra cặp số \[\left( {5;\,\, - 1} \right)\] là một nghiệm của phương trình \[x + 2y = 3.\] Do đó ý a) là đúng.
b) Sai. Phương trình \[x + 2y = 3\] là phương trình bậc nhất hai ẩn. Do đó ý b) là sai.
c) Sai. Viết lại phương trình \[x + 2y = 3\] thành \(y = \frac{3}{2} - \frac{1}{2}x\), khi đó tất cả các nghiệm của phương trình đã cho được biểu diễn bởi đường thẳng \(y = \frac{3}{2} - \frac{1}{2}x\). Do đó ý c) là sai.
d) Đúng. Phương trình \[x + 2y = 3\] là phương trình bậc nhất hai ẩn, có vô số nghiệm.
Viết lại phương trình \[x + 2y = 3\] thành \(x = 3 - 2y\).
Khi đó, nghiệm tổng quát của phương trình đó là: \(\left( {3 - 2y;\,\,y} \right)\) với \(y \in \mathbb{R}\) tùy ý. Do đó ý d) là đúng.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.