Câu hỏi:

18/09/2025 181 Lưu

(0,5 điểm) Người ta dùng 100 m rào để rào một mảnh vườn hình chữ nhật để thả gia súc. Biết một cạnh của mảnh vườn là bức tường (không phải rào). Tính diện tích lớn nhất của mảnh vườn để có thể rào được.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Gọi \(x,\,\,y\) lần lượt là độ dài hai cạnh của mảnh vườn hình chữ nhật \(\left( {x > 0,\,\,y > 0} \right).\)

Số mét rào cần rào ba cạnh còn lại của mảnh vườn là: \(2x + y\) (mét).

Diện tích mảnh vườn là: \(xy\) (m2).

Chứng minh bất đẳng thức: \[ab \le {\left( {\frac{{a + b}}{2}} \right)^2}\,\,\,\,\left( * \right)\] với \(a,\,\,b\) là các số không âm.

Thật vậy, xét hiệu \({\left( {\frac{{a + b}}{2}} \right)^2} - ab = \frac{{{a^2} + 2ab + {b^2} - 4ab}}{4} = \frac{{{a^2} - 2ab + {b^2}}}{4} = \frac{{{{\left( {a - b} \right)}^2}}}{2}\)

Với mọi \(a,\,\,b\) là các số không âm, ta có:

\({\left( {a - b} \right)^2} \ge 0\) nên \(\frac{{{{\left( {a - b} \right)}^2}}}{2} \ge 0\) suy ra \({\left( {\frac{{a + b}}{2}} \right)^2} \ge ab\).

Dấu “=” xảy ra khi và chỉ khi \(a = b.\) Như vậy bất đẳng thức \(\left( * \right)\) đã được chứng minh.

Áp dụng bất đẳng thức \(\left( * \right)\) ta được:

\[xy = 2 \cdot x \cdot \frac{y}{2} \le 2 \cdot {\left( {\frac{{x + \frac{y}{2}}}{2}} \right)^2} = \frac{1}{2} \cdot {\left( {\frac{{2x + y}}{2}} \right)^2} = \frac{1}{2} \cdot {\left( {\frac{{100}}{2}} \right)^2} = 1\,\,250{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]

Dấu “=” xảy ra khi và chỉ khi \(x = \frac{y}{2}\)\(2x + y = 100\) hay \(2 \cdot \frac{y}{2} + y = 100\) tức là \(y = 50\), \(x = 25.\)

Vậy diện tích lớn nhất của mảnh vườn là \(1\,\,250{\rm{\;}}{{\rm{m}}^2}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án: 14.

Ta có \[3 < \frac{{2x - 2}}{8}\]

\[2x - 2 > 24\]

\[2x > 26\]

\[x > 26:2\]

\[x > 13.\]

Do đó, bất phương trình có nghiệm \[x > 13.\]

Vậy số tự nhiên nhỏ nhất của \(x\) thỏa mãn bất phương trình đã cho là  \[x = 14.\]

Câu 2

A. \[x = - 9\,;\,\,x = 4.\]                                     
B. \[x = 4.\]                   
C. \[x = - 9.\]                    
D. \[x = 9\,;\,\,x = 4.\]

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Ta có: \(\left( {\frac{2}{3}x + 6} \right)\left( {8 - 2x} \right) = 0\)

       \(\frac{2}{3}x + 6 = 0\) hoặc \(8 - 2x = 0\)

       \(\frac{2}{3}x = - 6\) hoặc \(2x = 8\)

       \(x = - 9\) hoặc \(x = 4\)

Vậy phương trình đã cho có hai nghiệm là \(x = - 9\,;\) \(x = 4\).

Câu 4

A. \[5 + 7x \le 11.\]                                            
B. \[2,5x - 6 > 9 + 4x.\] 
C. \[5 + 7x \ge 15.\]                                            
D. \[3 - 0,2x > 13.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[x \ne 1;{\rm{ }}x \ne - 3\].                        
B. \[x \ne 2;{\rm{ }}x \ne 1\].                                
C. \[x \ne - 3;{\rm{ }}x \ne -2\].                      
D. \(x \ne - 2;{\rm{ }}x \ne 1.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP