Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
|
Xét \(\Delta ABC\) vuông tại \(A,\) ta có: ⦁ \[B{C^2} = A{C^2} + A{B^2}\] hay \({a^2} = {b^2} + {c^2}\) (định lí Pythagore); ⦁ \[AC = BC \cdot \sin B = BC \cdot \cos C\] hay \(b = a \cdot \sin B = a \cdot \cos C\); ⦁ \(AB = BC \cdot \sin C = BC \cdot \cos B\) hay \(c = a \cdot \sin C = a \cdot \cos B\); Như vậy các khẳng định A, C, D đều đúng. Ta chọn phương án B. |
|
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
⦁ Gọi \(x\) là số lượng khách đăng ký thêm, \(x > 0,\,\,x \in \mathbb{N}.\)
Khi đó, tổng số khách sẽ là \(80 + x\) (khách).
Cứ thêm một người thì giá chuyến du lịch còn lại là: \[5\,\,000\,\,000 - 50\,\,000 \cdot 1\] đồng/ người cho toàn bộ hành khách.
Thêm \(x\) người thì giá chuyến du lịch còn lại là: \[5\,\,000\,\,000 - 50\,\,000x\] đồng/người cho toàn bộ hành khách.
Doanh thu công ty du lịch thu được là:
\(T = \left( {80 + x} \right)\left( {5\,\,000\,\,000 - 50\,\,000x} \right) = 50\,\,000\left( {80 + x} \right)\left( {100 - x} \right)\) (đồng).
Để doanh thu cao nhất thì ta tìm giá trị lớn nhất của biểu thức \(T.\)
⦁ Chứng minh bất đẳng thức: \(ab \le {\left( {\frac{{a + b}}{2}} \right)^2}\,\,\,\,\left( * \right)\) với \(a,\,\,b\) là các số không âm.
Thật vậy, xét hiệu \({\left( {\frac{{a + b}}{2}} \right)^2} - ab = \frac{{{a^2} + 2ab + {b^2} - 4ab}}{4} = \frac{{{a^2} - 2ab + {b^2}}}{4} = \frac{{{{\left( {a - b} \right)}^2}}}{2}\)
Với mọi \(a,\,\,b\) là các số không âm, ta có:
\({\left( {a - b} \right)^2} \ge 0\) nên \(\frac{{{{\left( {a - b} \right)}^2}}}{2} \ge 0\) suy ra \({\left( {\frac{{a + b}}{2}} \right)^2} \ge ab\).
Dấu “=” xảy ra khi và chỉ khi \(a = b.\) Như vậy bất đẳng thức \(\left( * \right)\) đã được chứng minh.
⦁ Áp dụng bất đẳng thức \(\left( * \right)\) vào biểu thức \(T = 50\,\,000\left( {80 + x} \right)\left( {100 - x} \right),\) ta được:
\[T = 50\,\,000\left( {80 + x} \right)\left( {100 - x} \right) \le 20\,\,000 \cdot {\left( {\frac{{80 + x + 100 - x}}{2}} \right)^2} = 648\,\,000\,\,000\].
Dấu “=” xảy ra khi và chỉ khi \[80 + x = 100 - x\] hay \[x = 10\].
Vậy nếu đoàn khách có \(80 + 10 = 90\) người thì công ty du lịch đạt doanh thu cao nhất là \[648\,\,000\,\,000\] đồng.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Ta viết phương trình \(3x + y = 6\) về dạng \(y = - 3x + 6.\)
Khi đó, nghiệm tổng quát của phương trình \(3x + y = 6\) là \[\left( {x;\,\, - 3x + 6} \right)\] với \[x \in \mathbb{R}\] tùy ý.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Cho bất phương trình \(m\left( {2x + 1} \right) < 8\).
a) Bất phương trình đã cho là bất phương trình bậc nhất ẩn \(x\) với \(m \in \mathbb{R}\) tùy ý.
b) Khi \(m = 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{7}{2}\).
c) Khi \(m = - 1,\) bất phương trình đã cho có nghiệm là \(x < - \frac{9}{2}\).
d) Khi \(m = - 2,\) bất phương trình đã cho có nghiệm nguyên lớn nhất là \( - 2\).
Cho bất phương trình \(m\left( {2x + 1} \right) < 8\).
a) Bất phương trình đã cho là bất phương trình bậc nhất ẩn \(x\) với \(m \in \mathbb{R}\) tùy ý.
b) Khi \(m = 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{7}{2}\).
c) Khi \(m = - 1,\) bất phương trình đã cho có nghiệm là \(x < - \frac{9}{2}\).
d) Khi \(m = - 2,\) bất phương trình đã cho có nghiệm nguyên lớn nhất là \( - 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Cho hình vẽ dưới đây: Đường thẳng \[d\] biểu diễn nghiệm của phương trình nào? A. \[y = 2x.\] B. \[y = - 2x.\] C. \[y = 2x + 1.\] D. \[y = - 2x + 1.\] (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/10-1758171729.png)