Câu hỏi:

18/09/2025 30 Lưu

Phần 2. Câu trắc nghiệm đúng sai (2,0 điểm)

Giải hệ phương trình \[\left\{ \begin{array}{l}6x - 3y = - 12\,\,\,\left( 1 \right)\\ - 2x + y = 4\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\] bằng phương pháp thế theo các bước:

a) Từ phương trình (2), ta có \(y = 2x + 4\).

b) Thay \(y = 2x + 4\) vào phương trình (1), ta được \(0x = 0\).

c) Phương trình \(0x = 0\) vô nghiệm.

d) Nghiệm tổng quát của hệ phương trình đã cho là \(\left( {2y + 4;\,\,y} \right)\) với \(x \in \mathbb{R}\) tùy ý.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án:               a) Đúng.     b) Đúng.    c) Sai.        d) Sai.

Giải hệ phương trình đã cho bằng phương pháp thế như sau:

Từ phương trình (2), ta có \(y = 2x + 4\).

Thay \(y = 2x + 4\) vào phương trình (1), ta được:

\(6x - 3\left( {2x + 4} \right) = - 12\) hay \(0x = 0\).

Phương trình trên có vô số nghiệm nên hệ phương trình đã cho có vô số nghiệm.

Nghiệm tổng quát của hệ phương trình đã cho là \(\left( {x;\,\,2x + 4} \right)\) với \(x \in \mathbb{R}\) tùy ý.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[y = 2x.\]                 
B. \[y = - 2x.\]              
C. \[y = 2x + 1.\]           
D. \[y = - 2x + 1.\]

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Nhận thấy đường thẳng \[d\] đi qua các điểm có tọa độ \[\left( {0\,;\,\,0} \right)\]\[\left( {1\,;\,\,2} \right).\]

Do đó, đường thẳng \[d\] biểu diễn nghiệm của phương trình \[y = 2x.\]

Lời giải

Hướng dẫn giải

Gọi \(x\) là số trận thắng – thua và \(y\) là số trận hòa \[\left( {x,{\rm{ }}y \in \mathbb{N}*} \right)\].

Nếu có 5 đội tham gia thi đấu, mỗi đội phải đấu với 4 đội còn lại nên với 5 đội tham gia thì có \(5 \cdot 4 = 20\) (trận đấu). Nhưng mỗi trận đấy có 2 đội tham gia nên tổng số trận đấu khi có 5 đội tham gia là \(\frac{{5 \cdot 4}}{2} = 10\) (trận đấu).

Vì có 10 trận đấu nên \(x + y = 10\) \[\left( 1 \right)\]

Mặt khác, tổng số điểm các đội là \(10 + 9 + 6 + 4 + 0 = 29\) (điểm).

Mỗi trận thắng – thua có tổng số điểm là 3 và mỗi trận hòa có tổng số có tổng số điểm là 2 nên ta có phương trình \(3x + 2y = 29\) \[\left( 2 \right)\]

Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] ta có hệ phương trình \(\left\{ \begin{array}{l}x + y = 10\\3x + 2y = 29\end{array} \right.\).

Từ phương trình thứ hai ta có \(x + y = 10\) suy ra \(x = 10 - y\). Thế vào phương trình thứ nhất, ta được:

\(3\left( {10 - y} \right) + 2y = 29\), suy ra \(30 - 3y + 2y = 29\) hay \(y = 1\) (thỏa mãn).

Từ đó \(x = 10 - y = 10 - 1 = 9\) (thỏa mãn).

Mỗi đội có 4 trận đấu với các đội còn lại mà đội A có 10 điểm tức đội A thắng 3 trận hòa 1 trận.

Đội B có 9 điểm tức thắng 3 trận thua 1 trận.

Đội C có 6 điểm tức thắng 2 trận thua 2 trận.

Đội D có 4 điểm thắng 1 trận hòa 1 trận.

Đội E không có điểm tức là thua hết 4 trận.

Vậy trận hòa là của đội A và đội D.

Câu 3

Giá trị của \(a\)\(b\) để cặp số \[\left( { - 2;\,\,3} \right)\] là nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{ax + y = 5}\\{3x + by = 0}\end{array}} \right.\)

A. \(\left( {a;\,\,b} \right) = \left( { - 3;\,\,3} \right)\).                        
B. \(\left( {a;\,\,b} \right) = \left( { - 2;\,\,1} \right)\).                        
C. \(\left( {a;\,\,b} \right) = \left( {2;\,\, - 4} \right)\).                        
D. \(\left( {a;\,\,b} \right) = \left( { - 1;\,\,2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( {x;\,\, - 3x - 6} \right)\) với \(x \in \mathbb{R}\) tùy ý.          
B. \(\left( { - 3y + 6;\,\,y} \right)\) với \(y \in \mathbb{R}\) tùy ý.
C. \[\left( {x;\,\, - 3x + 6} \right)\] với \[x \in \mathbb{R}\] tùy ý.          
D. \(\left( { - 3y - 6;\,\,y} \right)\) với \(y \in \mathbb{R}\) tùy ý.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho bất phương trình \(m\left( {2x + 1} \right) < 8\).

a) Bất phương trình đã cho là bất phương trình bậc nhất ẩn \(x\) với \(m \in \mathbb{R}\) tùy ý.

b) Khi \(m = 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{7}{2}\).

c) Khi \(m = - 1,\) bất phương trình đã cho có nghiệm là \(x < - \frac{9}{2}\).

d) Khi \(m = - 2,\) bất phương trình đã cho có nghiệm nguyên lớn nhất là \( - 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP