Một hình thang cân có chu vi bằng \(60\;{\rm{cm}}{\rm{,}}\) tổng hai đáy bằng \(40\;{\rm{cm}}\) thì độ dài cạnh bên là:
A. \(10\;{\rm{cm}}{\rm{.}}\)
Quảng cáo
Trả lời:
Đáp án đúng là: A
Tổng độ dài hai cạnh bên là: \(60 - 40 = 20\;\left( {{\rm{cm}}} \right).\)
Vì hình thang cân có hai cạnh bên bằng nhau nên độ dài cạnh bên là: \(20:2 = 10\;\left( {{\rm{cm}}} \right).\)
Vậy độ dài cạnh bên của hình thang đã cho bằng \(10\;{\rm{cm}}{\rm{.}}\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. Tứ giác có hai cạnh đối song song là hình thang.
B. Tứ giác có hai cạnh đối bằng nhau là hình thang.
C. Tứ giác có hai cạnh kề bằng nhau là hình thang.
Lời giải
Đáp án đúng là: A
Tứ giác có hai cạnh đối song song là hình thang.
Lời giải
Đáp án: \(60\)
Vì tứ giác \(ABCD\) là hình thang cân nên \(\widehat A = \widehat B,\;\widehat C = \widehat D.\)
Lại có: \[\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ \] (tổng các góc trong một tứ giác)
\(\widehat A + \widehat A + \widehat C + \widehat C = 360^\circ \)
\(2\left( {\widehat A + \widehat C} \right) = 360^\circ \)
\(\widehat A + \widehat C = 180^\circ .\)
Mà \(\widehat A = 2\widehat C\) nên \(\widehat C + 2\widehat C = 180^\circ .\) Vậy \(\widehat C = 60^\circ .\)
Câu 3
A. Tứ giác \(MNOP\) và tứ giác \(ABCD.\)
B. Tứ giác \(EHGF\) và tứ giác \(ABCD.\)
C. Tứ giác \(EHGF,\) tứ giác \(ABCD\) và tứ giác \(MNOP.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(\widehat B = 50^\circ .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
