Chọn khẳng định đúng:
A. Hình thang có hai góc kề một đáy bằng nhau là hình bình hành.
B. Hình thang có hai cạnh bên bằng nhau là hình bình hành.
C. Hình thang có hai cạnh bên song song là hình bình hành.
Quảng cáo
Trả lời:

Đáp án đúng là: C
Hình thang có hai góc kề một đáy bằng nhau là hình thang cân.
Hình thang có hai cạnh bên bằng nhau chưa chắc là hình bình hành. Ví dụ minh họa:

Hình thang có hai cạnh bên song song là hình bình hành.
Do đó, chọn đáp án C.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(108\)

Vì tứ giác \(ABCD\) là hình bình hành nên \(AD\,{\rm{//}}\,BC,\;BC = AD = 9\;{\rm{cm}}{\rm{.}}\)
Vì \(AD\,{\rm{//}}\,BC,\;AD \bot AC\) nên \(BC \bot AC.\)
Diện tích tam giác \(ABC\) vuông tại \(C\) là: \({S_{\Delta ABC}} = \frac{1}{2}AC \cdot CB = \frac{1}{2} \cdot 12 \cdot 9 = 54\;\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)
Diện tích \(\Delta ADC\) vuông tại \(A\) nên: \({S_{\Delta ADC}} = \frac{1}{2}AC \cdot AD = \frac{1}{2} \cdot 12 \cdot 9 = 54\;\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)
Diện tích hình bình hành \(ABCD\) là: \({S_{ABCD}} = {S_{\Delta ABC}} + {S_{\Delta ADC}} = 54 + 54 = 108\;\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)
Vậy diện tích hình bình hành \(ABCD\) là \(108\;{\rm{c}}{{\rm{m}}^2}.\)
Lời giải

a) Đúng.
Vì tứ giác \(ABCD\) là hình bình hành nên \(AB = CD,\;AD = BC,\;AD\;{\rm{//}}\;BC.\)
Vì \(AD\;{\rm{//}}\;BC\) nên \(\widehat {ADB} = \widehat {DBC}\) (hai góc so le trong).
b) Đúng.
Vì \(H,\;K\) lần lượt là hình chiếu vuông góc của \(A,\;C\) trên \(BD\) nên \(AH \bot BD,\;CK \bot BD.\)
Do đó, \(\widehat {DHA} = \widehat {BKC} = 90^\circ .\)
Tam giác \(DHA\) và tam giác \(BKC\) có: \(\widehat {DHA} = \widehat {BKC} = 90^\circ ,\;DA = BC\;\left( {cmt} \right),\;\widehat {ADB} = \widehat {DBC}\;\left( {cmt} \right).\)
Do đó, \(\Delta DHA = \Delta BKC\;\left( {ch - gn} \right).\)
c) Đúng.
Vì \(\Delta DHA = \Delta BKC\;\left( {cmt} \right)\) nên \(AH = KC.\)
Tứ giác \(AKCH\) có: \(AH = KC,\;AH\;{\rm{//}}\;KC\) (cùng vuông góc với \(BD\)) nên tứ giác \(AKCH\) là hình bình hành.
d) Sai.
Vì tứ giác \(ABCD\) là hình bình hành nên \(\widehat {DAB} = \widehat {DCB}.\)
Vì \(\Delta DHA = \Delta BKC\;\left( {cmt} \right)\) nên \(\widehat {DAH} = \widehat {KCB}\) (hai góc tương ứng).
Vì tứ giác \(AKCH\) là hình bình hành nên \(\widehat {HAK} = \widehat {HCK}.\)
Do đó, \(\widehat {DAB} - \widehat {DAH} - \widehat {HAK} = \widehat {DCB} - \widehat {KCB} - \widehat {HCK},\) suy ra \(\widehat {KAB} = \widehat {HCD}.\)
Câu 3
A. \(18\;{\rm{cm}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.