Câu hỏi:

19/09/2025 57 Lưu

Phần I. Trắc nghiệm nhiều phương án lựa chọn

 (Gồm 10 câu hỏi, hãy chọn phương án đúng duy nhất)

Trong các hình dưới đây, hình nào là hình vuông?
Trong các hình dưới đây, hình nào là hình vuông? (ảnh 1)

A. Hình \(1.\) 

B. Hình \(2.\) 
C. Hình \(3.\) 
D. Hình \(4.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Hình vuông là hình 1

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác \(ABC\) vuông tại \(A.\) Gọi \(M\) là trung điểm của \(BC.\) Gọi \(H\) là hình chiếu của \(M\) trên \(AB.\) Lấy điểm \(D\) đối xứng với \(M\) qua \(H.\) a) \(AM = BM = MC.\) (ảnh 1)

a) Đúng.

Vì \(AM\) là đường trung tuyến ứng với cạnh huyền \(BC\) của tam giác \(ABC\) vuông tại \(A\) nên \(AM = \frac{1}{2}BC,\) mà \(BM = MC = \frac{1}{2}BC\) nên \(AM = BM = MC.\)

b) Đúng.

Vì \(H\) là hình chiếu của \(M\) trên \(AB\) nên \(MH \bot AB\) tại \(H.\)

Vì \(AM = BM\) nên tam giác \(ABM\) cân tại \(M.\) Do đó, \(HM\) vừa là đường cao đồng thời là đường trung tuyến của tam giác \(ABM\) nên \(H\) là trung điểm của \(AB.\)

c) Sai.

Vì \(D\) đối xứng với \(M\) qua \(H\) nên \(H\) là là trung điểm của \(DM.\)

Tứ giác \(AMBD\) có: Hai đường chéo \(AB\) và \(DM\) cắt nhau tại \(H.\) Mà \(H\) vừa là trung điểm của \(AB\) vừa là trung điểm của \(DM\) nên tứ giác \(AMBD\) là hình bình hành.

Mà \(MD \bot AB\) tại \(H\) nên hình bình hành \(AMBD\) là hình thoi.

Do đó, \(AB\) là tia phân giác của \(\widehat {DAM}.\) Suy ra \(\widehat {DAB} = \widehat {BAM}.\)

d) Đúng.

Để hình thoi \(AMBD\) là hình vuông thì \(\widehat {DBM} = 90^\circ .\)

Mà \(BA\) là tia phân giác của \(\widehat {DBM}\) nên \(\widehat {ABC} = \frac{1}{2}\widehat {DBM} = \frac{1}{2} \cdot 90^\circ  = 45^\circ .\)

Theo giả thiết, tam giác \(ABC\) vuông tại \(A\) nên tam giác \(ABC\) vuông cân tại \(A.\)

Vậy để tứ giác \(AMBD\) là hình vuông thì tam giác \(ABC\) vuông cân tại \(A.\)

Lời giải

Đáp án: \(6\)

Cho hình chữ nhật \(ABCD.\) Gọi \(M,\;N\) lần lượt là trung điểm của \(BC,\;AD.\) Biết rằng \(AM \bot MD,\;AM = 6\;{\rm{cm}},\) khi đó độ dài đoạn thẳng \(BN\) bằng bao nhiêu \({\rm{cm}}?\) (ảnh 1)

Vì tứ giác \(ABCD\) là hình chữ nhật nên \(\widehat {ABM} = \widehat {BAN} = \widehat C = 90^\circ ,\;AB = CD.\)

Vì \(M\) là trung điểm của \(BC\) nên \(BM = MC.\)

Tam giác \(ABM\) và tam giác \(DCM\) có: \(\widehat {ABM} = \widehat C = 90^\circ ,\;AB = CD,\;BM = MC.\)

Do đó, \(\Delta ABM = \Delta DCM\left( {c - g - c} \right)\) nên \(AM = DM.\)

Suy ra, \(\Delta ADM\) cân tại \(M.\) Do đó, \(MN\) là đường trung tuyến đồng thời là đường cao của \(\Delta ADM.\)

Do đó, \(\widehat {ANM} = 90^\circ .\)

Tứ giác \(ANMB\) có: \(\widehat {ABM} = \widehat {BAN} = \widehat {ANM} = 90^\circ \) nên tứ giác \(ANMB\) là hình chữ nhật \(\left( 1 \right).\)

Suy ra: \(\widehat {BMN} = 90^\circ \;\left( 2 \right).\)

Vì \(AM \bot MD\) nên \(\widehat {AMD} = 90^\circ .\)

Vì \(MN\) là đường trung tuyến đồng thời là đường phân giác của \(\Delta ADM\) nên

\(\widehat {AMN} = \frac{1}{2}\widehat {AMD} = \frac{1}{2} \cdot 90^\circ  = 45^\circ \;\left( 3 \right).\)

Từ \(\left( 2 \right),\;\left( 3 \right)\) ta có: \(MA\) là tia phân giác của \(\widehat {BMN}\;\left( 4 \right).\)

Từ \(\left( 1 \right),\;\left( 4 \right)\) ta có: Tứ giác \(ANMB\) là hình vuông. Do đó, \(BN = AM = 6\;{\rm{cm}}.\)

Câu 3

A. Hình thoi có một góc vuông.

B. Hình chữ nhật có hai đường chéo bằng nhau.

C. Hình bình hành có hai đường chéo bằng nhau.

D. Hình thoi có hai đường chéo bằng nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\widehat {ABC} = 80^\circ .\)

B. \(AC > BD.\)
C. \(\widehat {CAB} = 45^\circ .\)  
D. \(BD > AC.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(AC = 3\;{\rm{cm}}{\rm{.}}\)     
B. \(AC = 6\;{\rm{cm}}{\rm{.}}\)      
C. \(AC = 8\;{\rm{cm}}{\rm{.}}\)          
D. \(AC = 9\;{\rm{cm}}{\rm{.}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP