Câu hỏi:

19/09/2025 11 Lưu

Cho hình vuông \(ABCD.\) Trên cạnh \(AB,BC,CD,DA\) lần lượt lấy các điểm \(E,F,G,H\) sao cho \(AE = BF = CG = DH\).

         a) \(AH = BE = CF = DG.\)

         b) \(\Delta AEH = \Delta BEF\).

         c) \(\widehat {FEH} < 90^\circ \).

         d) \(EFGH\) là hình vuông.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình vuông \(ABCD.\) Trên cạnh \(AB,BC,CD,DA\) lần lượt lấy các điểm \(E,F,G,H\) sao cho \(AE = BF = CG = DH\).           a) \(AH = BE = CF = DG.\)           b) \(\Delta AEH = \Delta BEF\). (ảnh 1)

a) Đúng.

Vì \(ABCD\) là hình vuông nên \(AB = BC = CD = DA\).

Mà \(AE = BF = CG = DH\) nên \(AH = BE = CF = DG.\)

b) Sai.

Xét \(\Delta AEH\) và \(\Delta BEF\), có:

\(AE = BF\) (gt)

\(AH = BE\) (cmt)

Do đó, \(\Delta AEH = \Delta BFE\) (2cgv).

c) Sai.

Vì \(\Delta AEH = \Delta BFE\) (cmt) nên \[\widehat {AEH} = \widehat {BFE}\] (hai góc tương ứng).

Trong tam giác \(\Delta BFE\) vuông tại \(B\) có: \[\widehat {FEB} + \widehat {BFE} = 90^\circ \] (phụ nhau).

Mà \[\widehat {AEH} = \widehat {BFE}\] (cmt) nên \[\widehat {AEH} + \widehat {BEF} = 90^\circ \].

Ta có: \[\widehat {AEH} + \widehat {BEF} + \widehat {HEF} = 180^\circ \]

Suy ra \[\widehat {HEF} = 180^\circ  - \left( {\widehat {AEH} + \widehat {BEF}} \right) = 180^\circ  - 90^\circ  = 90^\circ \].

Vậy \(\widehat {FEH} = 90^\circ .\)

d) Đúng.

Vì có \(AB = BC = CD = DA\) và \(AE = BF = CG = DH\) nên

ta chứng minh được \(\Delta AEH = \Delta BFE = \Delta CGF = \Delta DHG\).

Suy ra \(HE = EF = FG = GH\) nên \(EFGH\) là hình thoi.

Mà \(\widehat {FEH} = 90^\circ \) nên \(EFGH\) là hình vuông.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Cho tứ giác \(ABCD\), đường cao \(AH.\) Gọi \(I\) là trung điểm của \(AC\), \(E\) là điểm đối xứng với  \(H\) qua \(I.\) Tứ giác \(AECH\) là hình gì? (ảnh 1)

Nhận thấy, tứ giác \(AECH\) có hai đường chéo \(AC,EH\) cắt nhau tại \(I\) cũng chính là trung điểm của mỗi đường. Do đó, tứ giác \(AECH\) là hình bình hành.

Mà \(AECH\) có \(\widehat H = 90^\circ \), do đó \(AECH\) là hình chữ nhật.

Câu 2

A. Hình chữ nhật.                  

B. Hình vuông.             
C. Hình bình hành.       
D. Hình thoi.

Lời giải

Đáp án đúng là: B

Cho hình vuông \(ABCD\). Trên các cạnh \(AB,BC,CD,DA\) lần lượt lấy các điểm \(E,F,G,H\) sao cho \(AE = BF = CG = DH\). Lúc này, tứ giác \(EFGH\) là hình gì? (ảnh 1)

Vì có \(AB = BC = CD = DA\) và \(AE = BF = CG = DH\) nên

ta chứng minh được \(\Delta AEH = \Delta BFE = \Delta CGF = \Delta DHG\).

Suy ra \(HE = EF = FG = GH\) nên \(EFGH\) là hình thoi.

Mà \(\widehat {FEH} = 90^\circ \) nên \(EFGH\) là hình vuông.

Câu 7

A. \(AC = BD.\)

B. \(AC,{\rm{ }}BD\) giao nhau tại trung điểm mỗi đường.

C. \(AC \bot BD\).

D. Cả A, B, C đều đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP