Cho tam giác \(ABC\) vuông cân tại \(A.\) Trên cạnh \(BC\) lấy hai điểm \(D,\;E\) sao cho \(BD = DE = EC.\) Lấy các điểm \(F,\;G\) lần lượt thuộc cạnh \(AC,\;AB\) sao cho \(FE,\;GD\) cùng vuông góc với \(BC.\) Hỏi \(\widehat {DGE}\) có số đo bằng bao nhiêu độ?
Cho tam giác \(ABC\) vuông cân tại \(A.\) Trên cạnh \(BC\) lấy hai điểm \(D,\;E\) sao cho \(BD = DE = EC.\) Lấy các điểm \(F,\;G\) lần lượt thuộc cạnh \(AC,\;AB\) sao cho \(FE,\;GD\) cùng vuông góc với \(BC.\) Hỏi \(\widehat {DGE}\) có số đo bằng bao nhiêu độ?
Quảng cáo
Trả lời:
Đáp án: \(45\)

Vì tam giác \(ABC\) vuông cân tại \(A\) nên \(\widehat B = \widehat C = 45^\circ .\)
Vì \(GD \bot BC,\;FE \bot BC\) nên \(\widehat {GDB} = \widehat {FEC} = \widehat {FED} = 90^\circ .\)
Tam giác \(BDG\) có: \(\widehat B = 45^\circ ,\;\widehat {GDB} = 90^\circ \) nên tam giác \(BDG\) vuông cân tại \(D.\) Do đó, \(BD = DG.\)
Tam giác \(FEC\) có: \(\widehat C = 45^\circ ,\;\widehat {FEC} = 90^\circ \) nên tam giác \(FEC\) vuông cân tại \(E.\) Do đó, \(FE = EC.\)
Vì \(BD = DG,\;FE = EC,\;BD = DE = EC\) nên \(DG = DE = FE.\)
Tứ giác \(GFED\) có: \(DG = FE,\;DG{\rm{//}}FE\) (cùng vuông góc với \(BC\)) nên tứ giác \(GFED\) là hình bình hành.
Lại có: \(\widehat {FED} = 90^\circ \) nên tứ giác \(GFED\) là hình chữ nhật.
Mà \(DG = DE\) nên tứ giác \(GFED\) là hình vuông.
Suy ra: \(\widehat {DGF} = 90^\circ \) và \(GE\) là tia phân giác của \(\widehat {DGF}.\) Do đó, \(\widehat {DGE} = \frac{1}{2}\widehat {DGF} = \frac{1}{2} \cdot 90^\circ = 45^\circ .\)
Vậy \(\widehat {DGE} = 45^\circ .\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng.
Vì \(AM\) là đường trung tuyến ứng với cạnh huyền \(BC\) của tam giác \(ABC\) vuông tại \(A\) nên \(AM = \frac{1}{2}BC,\) mà \(BM = MC = \frac{1}{2}BC\) nên \(AM = BM = MC.\)
b) Đúng.
Vì \(H\) là hình chiếu của \(M\) trên \(AB\) nên \(MH \bot AB\) tại \(H.\)
Vì \(AM = BM\) nên tam giác \(ABM\) cân tại \(M.\) Do đó, \(HM\) vừa là đường cao đồng thời là đường trung tuyến của tam giác \(ABM\) nên \(H\) là trung điểm của \(AB.\)
c) Sai.
Vì \(D\) đối xứng với \(M\) qua \(H\) nên \(H\) là là trung điểm của \(DM.\)
Tứ giác \(AMBD\) có: Hai đường chéo \(AB\) và \(DM\) cắt nhau tại \(H.\) Mà \(H\) vừa là trung điểm của \(AB\) vừa là trung điểm của \(DM\) nên tứ giác \(AMBD\) là hình bình hành.
Mà \(MD \bot AB\) tại \(H\) nên hình bình hành \(AMBD\) là hình thoi.
Do đó, \(AB\) là tia phân giác của \(\widehat {DAM}.\) Suy ra \(\widehat {DAB} = \widehat {BAM}.\)
d) Đúng.
Để hình thoi \(AMBD\) là hình vuông thì \(\widehat {DBM} = 90^\circ .\)
Mà \(BA\) là tia phân giác của \(\widehat {DBM}\) nên \(\widehat {ABC} = \frac{1}{2}\widehat {DBM} = \frac{1}{2} \cdot 90^\circ = 45^\circ .\)
Theo giả thiết, tam giác \(ABC\) vuông tại \(A\) nên tam giác \(ABC\) vuông cân tại \(A.\)
Vậy để tứ giác \(AMBD\) là hình vuông thì tam giác \(ABC\) vuông cân tại \(A.\)
Lời giải
Đáp án: \(6\)

Vì tứ giác \(ABCD\) là hình chữ nhật nên \(\widehat {ABM} = \widehat {BAN} = \widehat C = 90^\circ ,\;AB = CD.\)
Vì \(M\) là trung điểm của \(BC\) nên \(BM = MC.\)
Tam giác \(ABM\) và tam giác \(DCM\) có: \(\widehat {ABM} = \widehat C = 90^\circ ,\;AB = CD,\;BM = MC.\)
Do đó, \(\Delta ABM = \Delta DCM\left( {c - g - c} \right)\) nên \(AM = DM.\)
Suy ra, \(\Delta ADM\) cân tại \(M.\) Do đó, \(MN\) là đường trung tuyến đồng thời là đường cao của \(\Delta ADM.\)
Do đó, \(\widehat {ANM} = 90^\circ .\)
Tứ giác \(ANMB\) có: \(\widehat {ABM} = \widehat {BAN} = \widehat {ANM} = 90^\circ \) nên tứ giác \(ANMB\) là hình chữ nhật \(\left( 1 \right).\)
Suy ra: \(\widehat {BMN} = 90^\circ \;\left( 2 \right).\)
Vì \(AM \bot MD\) nên \(\widehat {AMD} = 90^\circ .\)
Vì \(MN\) là đường trung tuyến đồng thời là đường phân giác của \(\Delta ADM\) nên
\(\widehat {AMN} = \frac{1}{2}\widehat {AMD} = \frac{1}{2} \cdot 90^\circ = 45^\circ \;\left( 3 \right).\)
Từ \(\left( 2 \right),\;\left( 3 \right)\) ta có: \(MA\) là tia phân giác của \(\widehat {BMN}\;\left( 4 \right).\)
Từ \(\left( 1 \right),\;\left( 4 \right)\) ta có: Tứ giác \(ANMB\) là hình vuông. Do đó, \(BN = AM = 6\;{\rm{cm}}.\)
Câu 3
A. Hình thoi có một góc vuông.
B. Hình chữ nhật có hai đường chéo bằng nhau.
C. Hình bình hành có hai đường chéo bằng nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\widehat {ABC} = 80^\circ .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

