Câu hỏi:

20/09/2025 25 Lưu

Cho tam giác \(ABC\) vuông cân tại \(A.\) Trên cạnh \(BC\) lấy hai điểm \(D,\;E\) sao cho \(BD = DE = EC.\) Lấy các điểm \(F,\;G\) lần lượt thuộc cạnh \(AC,\;AB\) sao cho \(FE,\;GD\) cùng vuông góc với \(BC.\) Hỏi \(\widehat {DGE}\) có số đo bằng bao nhiêu độ?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: \(45\)

Trên cạnh \(BC\) lấy hai điểm \(D,\;E\) sao cho \(BD = DE = EC.\) Lấy các điểm \(F,\;G\) lần lượt thuộc cạnh \(AC,\;AB\) sao cho \(FE,\;GD\) cùng vuông góc với \(BC.\) Hỏi \(\widehat {DGE}\) có số đo bằng bao nhiêu độ? (ảnh 1)

Vì tam giác \(ABC\) vuông cân tại \(A\) nên \(\widehat B = \widehat C = 45^\circ .\)

Vì \(GD \bot BC,\;FE \bot BC\) nên \(\widehat {GDB} = \widehat {FEC} = \widehat {FED} = 90^\circ .\)

Tam giác \(BDG\) có: \(\widehat B = 45^\circ ,\;\widehat {GDB} = 90^\circ \) nên tam giác \(BDG\) vuông cân tại \(D.\) Do đó, \(BD = DG.\)

Tam giác \(FEC\) có: \(\widehat C = 45^\circ ,\;\widehat {FEC} = 90^\circ \) nên tam giác \(FEC\) vuông cân tại \(E.\) Do đó, \(FE = EC.\)

Vì \(BD = DG,\;FE = EC,\;BD = DE = EC\) nên \(DG = DE = FE.\)

Tứ giác \(GFED\) có: \(DG = FE,\;DG{\rm{//}}FE\) (cùng vuông góc với \(BC\)) nên tứ giác \(GFED\) là hình bình hành.

Lại có: \(\widehat {FED} = 90^\circ \) nên tứ giác \(GFED\) là hình chữ nhật.

Mà \(DG = DE\) nên tứ giác \(GFED\) là hình vuông.

Suy ra: \(\widehat {DGF} = 90^\circ \) và \(GE\) là tia phân giác của \(\widehat {DGF}.\) Do đó, \(\widehat {DGE} = \frac{1}{2}\widehat {DGF} = \frac{1}{2} \cdot 90^\circ  = 45^\circ .\)

Vậy \(\widehat {DGE} = 45^\circ .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác \(ABC\) vuông tại \(A.\) Gọi \(M\) là trung điểm của \(BC.\) Gọi \(H\) là hình chiếu của \(M\) trên \(AB.\) Lấy điểm \(D\) đối xứng với \(M\) qua \(H.\) a) \(AM = BM = MC.\) (ảnh 1)

a) Đúng.

Vì \(AM\) là đường trung tuyến ứng với cạnh huyền \(BC\) của tam giác \(ABC\) vuông tại \(A\) nên \(AM = \frac{1}{2}BC,\) mà \(BM = MC = \frac{1}{2}BC\) nên \(AM = BM = MC.\)

b) Đúng.

Vì \(H\) là hình chiếu của \(M\) trên \(AB\) nên \(MH \bot AB\) tại \(H.\)

Vì \(AM = BM\) nên tam giác \(ABM\) cân tại \(M.\) Do đó, \(HM\) vừa là đường cao đồng thời là đường trung tuyến của tam giác \(ABM\) nên \(H\) là trung điểm của \(AB.\)

c) Sai.

Vì \(D\) đối xứng với \(M\) qua \(H\) nên \(H\) là là trung điểm của \(DM.\)

Tứ giác \(AMBD\) có: Hai đường chéo \(AB\) và \(DM\) cắt nhau tại \(H.\) Mà \(H\) vừa là trung điểm của \(AB\) vừa là trung điểm của \(DM\) nên tứ giác \(AMBD\) là hình bình hành.

Mà \(MD \bot AB\) tại \(H\) nên hình bình hành \(AMBD\) là hình thoi.

Do đó, \(AB\) là tia phân giác của \(\widehat {DAM}.\) Suy ra \(\widehat {DAB} = \widehat {BAM}.\)

d) Đúng.

Để hình thoi \(AMBD\) là hình vuông thì \(\widehat {DBM} = 90^\circ .\)

Mà \(BA\) là tia phân giác của \(\widehat {DBM}\) nên \(\widehat {ABC} = \frac{1}{2}\widehat {DBM} = \frac{1}{2} \cdot 90^\circ  = 45^\circ .\)

Theo giả thiết, tam giác \(ABC\) vuông tại \(A\) nên tam giác \(ABC\) vuông cân tại \(A.\)

Vậy để tứ giác \(AMBD\) là hình vuông thì tam giác \(ABC\) vuông cân tại \(A.\)

Lời giải

Đáp án đúng là: A

Cho tứ giác \(ABCD\), đường cao \(AH.\) Gọi \(I\) là trung điểm của \(AC\), \(E\) là điểm đối xứng với  \(H\) qua \(I.\) Tứ giác \(AECH\) là hình gì? (ảnh 1)

Nhận thấy, tứ giác \(AECH\) có hai đường chéo \(AC,EH\) cắt nhau tại \(I\) cũng chính là trung điểm của mỗi đường. Do đó, tứ giác \(AECH\) là hình bình hành.

Mà \(AECH\) có \(\widehat H = 90^\circ \), do đó \(AECH\) là hình chữ nhật.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Hình chữ nhật.                  

B. Hình vuông.             
C. Hình bình hành.       
D. Hình thoi.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(AC = \frac{1}{2}BD.\)   
B. \(AC = \frac{3}{4}BD.\)    
C. \(AC = \frac{4}{3}BD.\) 
  D. \(AC = BD.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP