Câu hỏi:

20/09/2025 22 Lưu

Ghép các dữ liệu với loại dữ liệu thích hợp.

1. Xếp loại mức độ hài lòng của khách hàng: Hài lòng; Khá hài lòng; Chưa hài lòng.

a) Số liệu liên tục.

2. Số nhạc cụ mà năm học sinh trong tổ 1 biết chơi: \(0;\,\,3;\,\,2;\,\,1;\,\,3.\)

b) Số liệu rời rạc.

3. Chiều cao mực nước thủy văn lớn nhất tại sông Tiền trong 5 ngày đầu tháng 8 (đơn vị: mét): \(1,68;\,\,1,75;\,\,1,82;\,\,1,66;\,\,1,62.\)

c) Dữ liệu không là số, có thể sắp xếp thứ tự.

4. Năm địa điểm du lịch của Việt Nam mà học sinh lớp 8A thích nhất: Vinpearl Safari (Phú Quốc), Đà Lạt, Bà Nà Hill (Đà Nẵng), Đỉnh Fansipan (Sapa – Lào Cai), Vịnh Hạ Long (Quảng Ninh).

d) Dữ liệu không là số, không thể sắp xếp thứ tự.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

1 – c; 2 – b; 3 – a; 4 – d.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

d) \[D = \left( {y - 2} \right)\left( {y - 5} \right)\left( {y - 6} \right)\left( {9 - y} \right)\]

\[ = \left[ {\left( {y - 2} \right)\left( {9 - y} \right)} \right]\left[ {\left( {y - 5} \right)\left( {y - 6} \right)} \right]\]

\[ = \left( { - {y^2} + 11y - 18} \right)\left( {{y^2} - 11y + 30} \right)\]

Đặt \[t = {y^2} - 11y\], ta có

\[D = \left( { - t - 18} \right)\left( {t + 30} \right)\]\[ = - {t^2} - 48t - 540\]

   \[ = - \left( {{t^2} + 48t + 576} \right) + 36\]\[ = - {\left( {t + 24} \right)^2} + 36.\]

Với mọi \(t,\) ta có \[{\left( {t + 24} \right)^2} \ge 0\] nên \[ - {\left( {t + 24} \right)^2} \le 0\] suy ra \[ - {\left( {t + 24} \right)^2} + 36 \le 36\].

Do đó \[D \le 36\].

Dấu xảy ra khi \(t = - 24\) hay \[{y^2} - 11y = - 24\]

\[{y^2} - 11y + 24 = 0\]

\[\left( {y - 3} \right)\left( {y - 8} \right) = 0\]

\[y = 3\] hoặc \[y = 8\]

Vậy giá trị lớn nhất của biểu thức \(D\)\(36\) khi \(y = 3\); \(y = 8\).

Lời giải

Hướng dẫn giải

Cách 1. Ta có: \({x^2} + 2xy + 6x + 6y + 2{y^2} + 8 = 0\)

\({x^2} + 2xy + {y^2} + 6x + 6y + 9 - 1 = - {y^2}\)

\({\left( {x + y} \right)^2} + 2\left( {x + y} \right) \cdot 3 + {3^2} - 1 = - {y^2}\)

\({\left( {x + y + 3} \right)^2} - 1 = - {y^2}\)

\(\left( {x + y + 3 + 1} \right)\left( {x + y + 3 - 1} \right) = - {y^2}\)

\(\left( {x + y + 4} \right)\left( {x + y + 2} \right) = - {y^2}\).

Với mọi \(x,\,\,y\) ta luôn có \({y^2} \ge 0\) hay \( - {y^2} \le 0\)

Nên \(\left( {x + y + 4} \right)\left( {x + y + 2} \right) \le 0.\)

\(\left( {x + y + 6 - 2} \right)\left( {x + y + 6 - 4} \right) \le 0\)

\(\left( {M - 2} \right)\left( {M - 4} \right) \le 0\) \((*)\)

Với mọi \(x,\,\,y\)\[M = x + y + 6\] ta lại có \(M - 4 < M - 2\) nên để \((*)\) xảy ra thì \(M - 4 \le 0\)\(M - 2 \ge 0.\)

Xét \(M - 4 \le 0\) ta có \(M \le 4\).

Dấu “=” xảy ra khi \(x + y + 2 = 0\)\(y = 0\), tức là \(x = - 2,\,\,y = 0.\)

Xét \(M - 2 \ge 0\) ta có \(M \ge 2\).

Dấu “=” xảy ra khi \(x + y + 4 = 0\)\(y = 0\), tức là \(x = - 4,\,\,y = 0.\)

Vậy GTLN của \(M\) bằng 4 khi \(x = - 2,\,\,y = 0\) và GTNN của \(M\) bằng 2 khi \(x = - 4,\,\,y = 0.\)

Cách 2. Ta có: \({x^2} + 2xy + 6x + 6y + 2{y^2} + 8 = 0\)

\({x^2} + 2xy + {y^2} + 6x + 6y + 9 = 1 - {y^2}\)

\({\left( {x + y} \right)^2} + 2\left( {x + y} \right) \cdot 3 + {3^2} = 1 - {y^2}\)

\({\left( {x + y + 3} \right)^2} = 1 - {y^2}\)

Với mọi \(x,\,\,y\) ta luôn có \({y^2} \ge 0\) hay \( - {y^2} \le 0\) nên \(1 - {y^2} \le 1\).

Suy ra: \({\left( {x + y + 3} \right)^2} \le 1\), do đó \(\left| {x + y + 3} \right| \le 1\) hay \( - 1 \le x + y + 3 \le 1\)

Vì vậy, \(2 \le x + y + 6 \le 4\)

Xét \(x + y + 6 \le 4\) hay \(M \le 4\). Dấu “=” xảy ra khi \(x + y + 6 = 4\)\(y = 0\), tức là \(x = - 2,\,\,y = 0.\)

Xét \(2 \le x + y + 6\) hay \(M \ge 2\). Dấu “=” xảy ra khi \(x + y + 6 = 2\)\(y = 0\), tức là \(x = - 4,\,\,y = 0.\)

Vậy GTLN của \(M\) bằng 4 khi \(x = - 2,\,\,y = 0\) và GTNN của \(M\) bằng 2 khi \(x = - 4,\,\,y = 0.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP