Cho x và y thoả mãn: \({x^2} + 5{y^2} - 3xy - 3x - y + 5 = 0\). Tính giá trị của biểu thức:
\(A = \frac{{{{\left( {x + y - 4} \right)}^{2222}} - {y^{2222}}}}{x}.\)
Cho x và y thoả mãn: \({x^2} + 5{y^2} - 3xy - 3x - y + 5 = 0\). Tính giá trị của biểu thức:
\(A = \frac{{{{\left( {x + y - 4} \right)}^{2222}} - {y^{2222}}}}{x}.\)
Quảng cáo
Trả lời:

Hướng dẫn giải
Ta có: \({x^2} + 5{y^2} - 3xy - 3x - y + 5 = 0\)
Suy ra \(2{x^2} + 10{y^2} - 6xy - 6x - 2y + 10 = 0\)
\({x^2} - 6xy + 9{y^2} + {x^2} - 6x + 9 + {y^2} - 2y + 1 = 0\)
\(\left( {{x^2} - 6xy + 9{y^2}} \right) + \left( {{x^2} - 6x + 9} \right) + \left( {{y^2} - 2y + 1} \right) = 0\)
\({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = 0\)
Với mọi \(x,\,\,y\) ta có: \({\left( {x - 3y} \right)^2} \ge 0,\,\,{\left( {x - 3} \right)^2} \ge 0,\,\,{\left( {y - 1} \right)^2} \ge 0\)
Suy ra \({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} \ge 0\)
Do đó, để \({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = 0\) thì \[\left\{ {\begin{array}{*{20}{l}}{{{\left( {x - 3y} \right)}^2} = 0}\\{{{\left( {x - 3} \right)}^2} = 0}\\{{{\left( {y - 1} \right)}^2} = 0}\end{array}} \right.\] hay \(\left\{ {\begin{array}{*{20}{l}}{x - 3y = 0}\\{x - 3 = 0}\\{y - 1 = 0}\end{array}} \right.\), tức là \(\left\{ {\begin{array}{*{20}{l}}{x = 3}\\{y = 1}\end{array}} \right.\).
Thay \(x = 3,\,\,y = 1\) vào biểu thức \(A,\) ta được:
\[A = \frac{{{{\left( {3 + 1 - 4} \right)}^{2222}} - {1^{2222}}}}{3} = \frac{{ - 1}}{3}.\]
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Cách 1. Ta có: \({x^2} + 2xy + 6x + 6y + 2{y^2} + 8 = 0\)
\({x^2} + 2xy + {y^2} + 6x + 6y + 9 - 1 = - {y^2}\)
\({\left( {x + y} \right)^2} + 2\left( {x + y} \right) \cdot 3 + {3^2} - 1 = - {y^2}\)
\({\left( {x + y + 3} \right)^2} - 1 = - {y^2}\)
\(\left( {x + y + 3 + 1} \right)\left( {x + y + 3 - 1} \right) = - {y^2}\)
\(\left( {x + y + 4} \right)\left( {x + y + 2} \right) = - {y^2}\).
Với mọi \(x,\,\,y\) ta luôn có \({y^2} \ge 0\) hay \( - {y^2} \le 0\)
Nên \(\left( {x + y + 4} \right)\left( {x + y + 2} \right) \le 0.\)
\(\left( {x + y + 6 - 2} \right)\left( {x + y + 6 - 4} \right) \le 0\)
\(\left( {M - 2} \right)\left( {M - 4} \right) \le 0\) \((*)\)
Với mọi \(x,\,\,y\) và \[M = x + y + 6\] ta lại có \(M - 4 < M - 2\) nên để \((*)\) xảy ra thì \(M - 4 \le 0\) và \(M - 2 \ge 0.\)
⦁ Xét \(M - 4 \le 0\) ta có \(M \le 4\).
Dấu “=” xảy ra khi \(x + y + 2 = 0\) và \(y = 0\), tức là \(x = - 2,\,\,y = 0.\)
⦁ Xét \(M - 2 \ge 0\) ta có \(M \ge 2\).
Dấu “=” xảy ra khi \(x + y + 4 = 0\) và \(y = 0\), tức là \(x = - 4,\,\,y = 0.\)
Vậy GTLN của \(M\) bằng 4 khi \(x = - 2,\,\,y = 0\) và GTNN của \(M\) bằng 2 khi \(x = - 4,\,\,y = 0.\)
Cách 2. Ta có: \({x^2} + 2xy + 6x + 6y + 2{y^2} + 8 = 0\)
\({x^2} + 2xy + {y^2} + 6x + 6y + 9 = 1 - {y^2}\)
\({\left( {x + y} \right)^2} + 2\left( {x + y} \right) \cdot 3 + {3^2} = 1 - {y^2}\)
\({\left( {x + y + 3} \right)^2} = 1 - {y^2}\)
Với mọi \(x,\,\,y\) ta luôn có \({y^2} \ge 0\) hay \( - {y^2} \le 0\) nên \(1 - {y^2} \le 1\).
Suy ra: \({\left( {x + y + 3} \right)^2} \le 1\), do đó \(\left| {x + y + 3} \right| \le 1\) hay \( - 1 \le x + y + 3 \le 1\)
Vì vậy, \(2 \le x + y + 6 \le 4\)
⦁ Xét \(x + y + 6 \le 4\) hay \(M \le 4\). Dấu “=” xảy ra khi \(x + y + 6 = 4\) và \(y = 0\), tức là \(x = - 2,\,\,y = 0.\)
⦁ Xét \(2 \le x + y + 6\) hay \(M \ge 2\). Dấu “=” xảy ra khi \(x + y + 6 = 2\) và \(y = 0\), tức là \(x = - 4,\,\,y = 0.\)
Vậy GTLN của \(M\) bằng 4 khi \(x = - 2,\,\,y = 0\) và GTNN của \(M\) bằng 2 khi \(x = - 4,\,\,y = 0.\)
Lời giải
Hướng dẫn giải
Xét \(\Delta ABC\) có \[AB{\rm{ }}\,{\rm{//}}\,EF,\] theo định lí Thalès ta có \(\frac{{EC}}{{EB}} = \frac{{CF}}{{FA}},\) hay \(\frac{{42}}{{BE}} = \frac{{35}}{{50}}.\)
Suy ra \(BE = \frac{{42 \cdot 50}}{{35}} = 60{\rm{\;m}}{\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.