Cho x và y thoả mãn: \({x^2} + 5{y^2} - 3xy - 3x - y + 5 = 0\). Tính giá trị của biểu thức:
\(A = \frac{{{{\left( {x + y - 4} \right)}^{2222}} - {y^{2222}}}}{x}.\)
Cho x và y thoả mãn: \({x^2} + 5{y^2} - 3xy - 3x - y + 5 = 0\). Tính giá trị của biểu thức:
\(A = \frac{{{{\left( {x + y - 4} \right)}^{2222}} - {y^{2222}}}}{x}.\)
Quảng cáo
Trả lời:

Hướng dẫn giải
Ta có: \({x^2} + 5{y^2} - 3xy - 3x - y + 5 = 0\)
Suy ra \(2{x^2} + 10{y^2} - 6xy - 6x - 2y + 10 = 0\)
\({x^2} - 6xy + 9{y^2} + {x^2} - 6x + 9 + {y^2} - 2y + 1 = 0\)
\(\left( {{x^2} - 6xy + 9{y^2}} \right) + \left( {{x^2} - 6x + 9} \right) + \left( {{y^2} - 2y + 1} \right) = 0\)
\({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = 0\)
Với mọi \(x,\,\,y\) ta có: \({\left( {x - 3y} \right)^2} \ge 0,\,\,{\left( {x - 3} \right)^2} \ge 0,\,\,{\left( {y - 1} \right)^2} \ge 0\)
Suy ra \({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} \ge 0\)
Do đó, để \({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = 0\) thì \[\left\{ {\begin{array}{*{20}{l}}{{{\left( {x - 3y} \right)}^2} = 0}\\{{{\left( {x - 3} \right)}^2} = 0}\\{{{\left( {y - 1} \right)}^2} = 0}\end{array}} \right.\] hay \(\left\{ {\begin{array}{*{20}{l}}{x - 3y = 0}\\{x - 3 = 0}\\{y - 1 = 0}\end{array}} \right.\), tức là \(\left\{ {\begin{array}{*{20}{l}}{x = 3}\\{y = 1}\end{array}} \right.\).
Thay \(x = 3,\,\,y = 1\) vào biểu thức \(A,\) ta được:
\[A = \frac{{{{\left( {3 + 1 - 4} \right)}^{2222}} - {1^{2222}}}}{3} = \frac{{ - 1}}{3}.\]
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
d) \[D = \left( {y - 2} \right)\left( {y - 5} \right)\left( {y - 6} \right)\left( {9 - y} \right)\]
\[ = \left[ {\left( {y - 2} \right)\left( {9 - y} \right)} \right]\left[ {\left( {y - 5} \right)\left( {y - 6} \right)} \right]\]
\[ = \left( { - {y^2} + 11y - 18} \right)\left( {{y^2} - 11y + 30} \right)\]
Đặt \[t = {y^2} - 11y\], ta có
\[D = \left( { - t - 18} \right)\left( {t + 30} \right)\]\[ = - {t^2} - 48t - 540\]
\[ = - \left( {{t^2} + 48t + 576} \right) + 36\]\[ = - {\left( {t + 24} \right)^2} + 36.\]
Với mọi \(t,\) ta có \[{\left( {t + 24} \right)^2} \ge 0\] nên \[ - {\left( {t + 24} \right)^2} \le 0\] suy ra \[ - {\left( {t + 24} \right)^2} + 36 \le 36\].
Do đó \[D \le 36\].
Dấu xảy ra khi \(t = - 24\) hay \[{y^2} - 11y = - 24\]
\[{y^2} - 11y + 24 = 0\]
\[\left( {y - 3} \right)\left( {y - 8} \right) = 0\]
\[y = 3\] hoặc \[y = 8\]
Vậy giá trị lớn nhất của biểu thức \(D\) là \(36\) khi \(y = 3\); \(y = 8\).
Lời giải
Hướng dẫn giải
a) Ta hoàn thành được biểu đồ cột kép biểu diễn dữ liệu trong biểu đồ đoạn thẳng như sau:
b) Trong năm 2020 lượng gia cầm ở Kon Tum nhiều nhất, là 1698 nghìn con.
c) Tổng số lượng gia cầm ở Kon Tum trong năm \[2015,\]\[2018,{\rm{ }}2019,{\rm{ }}2020\] là:
\(853 + 1\,\,431 + 1\,\,608 + 1\,\,698 = 5\,\,590\) (nghìn con).
Trong năm 2018, số lượng gia cầm ở TP. HCM \[(375\] nghìn con) ít hơn so với số lượng gia cầm ở Kon Tum \[(1{\rm{ }}431\] nghìn con) nên nhận định trên bài báo không chính xác.
d) Một vài giải pháp để tăng số lượng gia cầm ở Kon Tum trong những năm tới để đạt hiệu quả trong chăn nuôi:
⦁ Đẩy mạnh tuyên truyền, vận động nhân dân chăm sóc tốt đàn gia cầm hiện có;
⦁ Mạnh dạn đầu tư phát triển quy mô chăn nuôi, đa dạng các loại gia cầm;
⦁ Chú trọng việc lai tạo và cải thiện giống gia cầm địa phương;
⦁ Thường xuyên thực hiện vệ sinh tiêu độc khử trùng; …
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.